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Abstract

This paper presents a technique that allows to untangle high order/curvilinear
meshes. The technique makes use of unconstrained optimization where ele-
ment Jacobians are constrained to lie in a prescribed range through moving
log-barriers. The untangling procedure starts from a possibly invalid curvi-
linear mesh and moves mesh vertices with the objective of producing elements
that all have bounded Jacobians. Bounds on Jacobians are computed using
results of papers [1, 2]. The technique is applicable to any kind of elements,
both for surface, volume, hybrid or boundary layer meshes. A series of ex-
amples demonstrate both the robustness and the efficiency of the technique.
The final example, involving a time explicit computation, shows that it is
possible to control the stable time step of the computation for curvilinear
meshes through an alternative element deformation measure.
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1. Introduction

There is a growing consensus in the computational mechanics community
that state of the art solver technology requires, and will continue to require
too extensive computational resources to provide the necessary resolution for
a broad range of demanding applications, even at the rate that computational
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power increases. The requirement for high resolution naturally leads us to
consider methods which have a higher order of grid convergence than the
classical (formal) 2nd order provided by most industrial grade codes. This
indicates that higher-order discretization methods will replace at some point
the current finite volume and finite element solvers, at least for part of their
applications.

The development of high-order numerical technologies for engineering
analysis has been underway for many years now. For example, Discontinuous
Galerkin methods (DGM) have been largely studied in the literature, initially
in a theoretical context [3], and now from the application point of view
[4]. In many contributions, it is shown that the accuracy of the method
strongly depends on the accuracy of the geometrical discretization [5–7].
Consequently, it is necessary to address the problem of generating the high-
order meshes that are needed to fully benefit from high-order methods.

Modern mesh generation procedures take as input CAD1 models com-
posed of model entities. Each model entity Gd

i has a geometry (or shape) [8,
9], that depends on the solid modeler for its underlying representation. Solid
modelers usually provide a parametrization of the shapes, that is, a map-
ping ξ ∈ Rd 7→ x ∈ R3. The geometry of a model vertex G0

i is simply
its 3D location, xi = (xi, yi, zi). The geometry of a model edge G1

i is its
underlying curve with its parametrization x(t), t ∈ [t1, t2]. The geometry of
a model face G2

i is its underlying surface with its parametrization x(u, v),
(u, v) ∈ S ⊂ R2. The geometry associated with a model region G3

i is R3.
There are also four kind of mesh entities: mesh verticesM0

i , mesh edgesM1
i ,

mesh faces M2
i and mesh regions M3

i that are said to be classified on model
entities2. Each mesh entity is classified on the model entity of the smallest
dimension that contains it.

The way of building a high order mesh is to first generate a straight sided
mesh. Then, mesh entities that are classified on the curved boundaries of
the domain are curved accordingly (see Figure 1). For mesh edges that are
classified on model edges (for example M1

2 @ G1
1 on Figure 1), additional

high order mesh points are added on the geometry of the model edge. Then,
high order points are added on mesh edges that are classified on model faces
(for example M1

1 @ G2
1 on Figure 1). Finally, high order points may be

added on mesh faces that are classified on model faces. The position of the
high order points can be chosen in such a way that the geometrical error,

1Computer Aided Design.
2We use the symbol @ for indicating that a mesh entity is classified on a model entity.
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Figure 1: Straight sided mesh (left) and curvilinear (cubic) mesh (right).

i.e. the distance between the CAD model and the mesh, is minimized. In
this paper however, the high order points are simply defined by orthogonal
projection from the straight mesh entity onto the curved geometry defined
by the CAD model.

The naive curving procedure described above does not ensure that all the
elements of the final curved mesh are valid. Figure 2 gives an illustration
of this important issue. Some of the curved triangles are tangled: they self-
intersect after having been curved. It is important to note that this problem
is not related to the accuracy of the geometrical discretization: in Figure 2,
the mesh would not be valid even if the curved edge was assigned the ex-
act geometry (blue curve). Invalid elements may be detected by exploiting

First-order mesh High-order vertices Untangling

Figure 2: Straight sided mesh (left) basic curvilinear (quadratic) mesh with tangled ele-
ments (center) and untangled mesh (right).

specific properties of the Jacobian of the transformations that map a fixed
reference element onto each element in the physical domain, as shown in
Figure 3. In particular, a change of sign in the Jacobian over an element
indicates that the corresponding map is not injective, so the numerical meth-
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Figure 3: Reference unit triangle in local coordinates ξ = (ξ, η) and the mappings x(ξ),
X(ξ) and X(x).

ods that rely on integration over elements cannot be used. This is the case
for self-intersecting elements. In two recent papers [1, 2], a general formula-
tion has been developed for computing robust estimates of the geometrical
validity of a curvilinear element. Provable bounds on element Jacobians
can be computed for high order triangles, quads, tetrahedra, hexahedra and
prisms.

Figure 2 indicates that, without refining the mesh, the only way of gen-
erating a valid high order mesh is to curve not only mesh entities classified
on curved model entities, but also those that are initially straight-sided in-
side the computational domain. It is thus necessary to somehow propagate
the curvature inside the domain. Several smoothing schemes have been pro-
posed in the literature to this effect: linear smoothing techniques such as
Laplacian smoothing [10], Winslow smoothing [11] or linear elasticity with
varying stiffness [10, 12]. Even though such simple techniques may often lead
to interesting results, there is no guarantee whatsoever that applying such a
linear smoother will result in an untangled mesh. Nonlinear smoothing tech-
niques have also been investigated, in particular using a nonlinear elasticity
analogy [13], which results in a valid curvilinear mesh. Yet, computing a non-
linear mechanics problem including large deformations on a high-order and
highly stretched mesh is numerically very complex (more than solving the
Navier-Stokes equations on the same grid, for instance). The computational
cost may then be excessive, given that the meshing time is expected to be
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a fraction of the overall CPU time. Besides linear and nonlinear smoothing
techniques, other authors [14–16] make use of mesh adaptation techniques
by eliminating invalid elements by a combination of local mesh refinements,
edge and face swaps, and node relocations.

In this paper, we propose a robust smoothing scheme that makes it pos-
sible to build a curvilinear mesh for which the validity of every element
is guaranteed. This new untangling procedure relies on an optimization
algorithm rather than a mechanical analogy or local mesh refinement: it
specifically targets element Jacobians and modifies node locations in such a
way that Jacobian values lie in a predefined range. This approach is loosely
related to the optimization schemes proposed by several authors for untan-
gling straight-sided meshes [17–20], but with a focus on arbitrarily high-order
elements.

The paper is organized as follows. In Section 2, we briefly recall the
results of paper [1, 2] on Jacobian bounds. Section 3 is dedicated to the
practical computation of both Jacobian bounds and their derivatives with
respect to the motion of mesh vertices. Section 4 is the kernel of the paper.
An objective function that specifically targets invalid Jacobians is described
in Section 4.1. Constraints on Jacobian positivity are imposed through log-
barriers, allowing the use of unconstrained optimization procedures. The
optimization strategy is described in Section 4.2. The optimization starts
with an invalid mesh and the asymptote in the log barrier is progressively
moved into the valid region. Some examples of mesh untangling are pre-
sented in Section 5 where both the robustness and the efficiency of the new
methodology are demonstrated. Some 3D examples are presented in Sec-
tion 5.1 with timings and statistics. In Section 5.2, the example of a high
order boundary layer mesh is presented. A new term is added to the ob-
jective function with the aim of controlling the maximum Jacobian as well.
Finally, Section 6 presents a simple idea for controlling the impact of mesh
curvature on the explicit time step of computations.

2. Validity estimates of curvilinear meshes

Let us introduce the following notations. We call ne and nv the number
of elements and vertices of the mesh. Each element e of the mesh contains
Np vertices. Note that in this context, the word “vertex” denotes any node
of the mesh, whether it is a geometrical vertex of a straight-sided element or
a high-order node of a curved element.

We noteXe
i the position of the ith vertex of the element e in the straight-

sided configuration and xe
i the location of the same vertex, yet in some
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deformed configuration.
The shape of an element e is defined geometrically through its vertices xe

i ,
i = 1 . . . Np that are nodes associated to a set of Lagrange shape functions
L(p)i (ξ), i = 1 . . . Np at order p. This allows us to map a reference element
to the real one:

x(ξ) =

Np∑
i=1

L(p)i (ξ) xe
i . (1)

Consider now the transformation x(X) that maps straight sided elements
onto curvilinear elements (see Figure 3). The mapping x(X) should be bi-
jective, i.e. it should admit an inverse. This implies that the determinant
of the Jacobian detx,X has to be non-zero, for every value of ξ in the refer-
ence element. In practice, this condition reduces to strict positivity for 3D
elements, but an ambiguity remains for 2D elements, in which the Jacobian
is defined with respect to a local normal. The orientation of planar 2D ele-
ments can be chosen in such a way that the direction of the constant normal
ensures the positivity of the Jacobian. For curved surfaces in 3D however,
the definition of the Jacobian is more complex, so that the condition of strict
positivity that we retain in this paper may be overly restrictive.

It is possible to write this determinant in terms of the ξ coordinates as:

detx,X =
detx,ξ

detX ,ξ
=
J(ξ)

Je
0

,

where Je
0 is the strictly positive and constant3 Jacobian of the straight sided

element. The function x(X) is called the distortion mapping. Its determi-
nant detx,X , that we call the scaled Jacobian, should be as close to 1 as
possible in order not to degrade the quality of the straight sided element e.

In [1, 2] it is shown that it is possible to reliably detect invalid elements.
In other words, it is possible to find reliable bounds to Jmin = minξ J and
to Jmax = maxξ J over the whole element. The Jacobian J is a polynomial
in ξ. It can then be interpolated exactly as a linear combination of Bézier
polynomials B(q)i at a certain order q ≥ p over the element. Provable bounds
for Jmin and Jmax are then computed using an interesting property of the
Bézier polynomials, namely that their value is contained within the range of

3Straight sided element Jacobians are constant for simplical elements only, i.e. triangles
in 2D and tetrahedra in 3D.
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their coefficients. Assuming that J is a polynomial of order q in ξ, we write

J(ξ) =

Nq∑
i=1

B(q)i (ξ)Bi (2)

and bounds can be computed as

min
ξ
J(ξ) ≥ min

i
Bi and max

ξ
J(ξ) ≤ max

i
Bi.

Although they are reliable, the bounds obtained in this manner may not
be accurate: miniBi may be much lower than minξ J(ξ) and maxiBi may
be much greater than maxξ J(ξ). The adaptive procedure described in [1, 2]
overcomes this problem, but it implies a higher computational cost, as well
as additional complexity in the formulation. Therefore, we favor the direct
evaluation provided by Eq. (2) in the present work, even though it yields an
overly restrictive estimation of the Jacobian bounds.

The following section is dedicated to the practical computation of the co-
efficients Bi as well as their derivatives with respect to the vertex coordinates
xe
i .

3. Computation of Bézier coefficients and their derivatives

The aim of our method is to untangle both surfacic and volume meshes.
For that, we assume that a point x has always 3 coordinates x = {x, y, z}.
Local coordinates ξ = {ξ, η, ζ} are also supposed to be three dimensional.
Yet, for surface meshes, we assume that vector

n =

{
∂x

∂ζ
,
∂y

∂ζ
,
∂z

∂ζ

}
is the constant unit normal vector to the straight sided element. With that
hypothesis, it is possible to compute the determinant of the Jacobian at
every Lagrange node ξk = (ξk, ηk, ζk) at order q:

Jk = J(ξk) =
∂x

∂ξ

∂y

∂η

∂z

∂ζ
+
∂z

∂ξ

∂x

∂η

∂y

∂ζ
+
∂y

∂ξ

∂z

∂η

∂x

∂ζ
−

∂z

∂ξ

∂y

∂η

∂x

∂ζ
− ∂x

∂ξ

∂z

∂η

∂y

∂ζ
− ∂y

∂ξ

∂x

∂η

∂z

∂ζ
. (3)

Considering that

x =

Np∑
i=1

xeiL(p)i (ξk),
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it is possible to compute the sensitivity of the Jacobian at point k with
respect to the x coordinate of the vertex i:

∂Jk
∂xei

=
∂L(p)i

∂ξ

∂y

∂η

∂z

∂ζ
+
∂z

∂ξ

∂L(p)i

∂η

∂y

∂ζ
+
∂y

∂ξ

∂z

∂η

∂L(p)i

∂ζ
−

∂z

∂ξ

∂y

∂η

∂L(p)i

∂ζ
− ∂L(p)i

∂ξ

∂z

∂η

∂y

∂ζ
− ∂y

∂ξ

∂L(p)i

∂η

∂z

∂ζ
. (4)

The same computation can be done for ∂Jk
∂yei

and ∂Jk
∂zei

. In practice, the follow-
ing matrix J of size Nq × (3Np + 1) is computed for every element e:

J =


∂J1
∂xe

1
. . . ∂J1

∂xe
Np

∂J1
∂ye1

. . . ∂J1
∂yeNp

∂J1
∂ze1

. . . ∂J1
∂zeNp

J1

...
...

...
...

...
...

...
∂JNq

∂xe
1

. . .
∂JNq

∂xe
Np

∂JNq

∂ye1
. . .

∂JNq

∂yeNp

∂JNq

∂ze1
. . .

∂JNq

∂zeNp

JNq


Assuming that T q

lk = B(q)l (ξk) is the transformation matrix that enables to
compute Bézier coefficients Bl using Lagrange coefficients Jk, the matrix

B =


∂B1
∂xe

1
. . . ∂B1

∂xe
Np

∂B1
∂ye1

. . . ∂B1
∂yeNp

∂B1
∂ze1

. . . ∂B1
∂zeNp

B1

...
...

...
...

...
...

...
∂BNq

∂xe
1

. . .
∂BNq

∂xe
Np

∂BNq

∂ye1
. . .

∂BNq

∂yeNp

∂BNq

∂ze1
. . .

∂BNq

∂zeNp

BNq

 .
(5)

that contains both the Bézier coefficients Bl as well as their gradients with
respect to the position of nodes of element e is calculated through a single
matrix-matrix product: Blj = T q

lkJkj .
It is then possible to use the Bi’s and their gradients in a gradient-based

optimization procedure. In what follows, an objective function that contains
the coefficients Bi is constructed in order to control the quality of elements.

4. Curvilinear mesh untangling

4.1. An objective function
This section describes the objective function f(xe

i ) that is used to un-
tangle invalid curved elements through an unconstrained optimization pro-
cedure. We design a function

f = E + F
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that is composed of two parts E and F .
Our assumption is that the method is provided with a straight-sided mesh

of high quality. This mesh has potentially been defined to satisfy multiple
criteria, such as a predetermined size field, or anisotropic adaptation. When
curving such meshes, it is desirable to preserve as much as possible all these
features, which implies keeping the nodes as close as possible to their initial
positions in the straight sided mesh.

To this end, we want to introduce some kind of energy E associated with
the displacement of the nodes xe

i −Xe
i , i.e. a positive quadratic form that

is a measure of the distance between the straight sided nodes Xe
i and their

position xe
i in the curved mesh:

E(xi,K) =
1

2

∑
e

Np∑
i=1

Np∑
j=1

(xe
i −Xe

i )K
e
ij(x

e
j −Xe

j) ≥ 0 (6)

where K is a symmetric positive matrix of size 3nv × 3nv and Ke
ij is of size

3×3. In this paper, we choose K as the diagonal matrix with entries we
i /L

2,
where we

i are user-defined weights used to set the balance between the two
parts E and F of the objective function f , and L is a length scale represen-
tative of the problem. We choose L as the maximum distance, among all
vertices of the initial tangled mesh, between a node and its counterpart in the
straight-sided mesh. As for the non-dimensional weights we

i , we usually set
we
i = 105 if the node i of element e lies on the boundary, and we

i = 100 other-
wise. However, we observe in practice that the value of we

i has little influence
on the convergence of the optimization method. The presence of E prevents
the problem from being under-determined, and it orients the optimization
procedure towards a solution that tends to preserve the straight-sided mesh,
but the term F dominates for the most problematic (tangled) elements that
drive the mesh deformation.

The second part F of the functional deals with Jacobian positivity. We
use a log barrier [21] in order to avoid Jacobians that are too small, and a
quadratic function to penalize Jacobians that are too high:

F(xi, ε) =

ne∑
e=1

Nq∑
l=1

F e
l (xe

i , ε)

with

F e
l (xe

i , ε) =

[
log

(
Be

l (xe
i )− εJe

0

Je
0 − εJe

0

)]2
+

(
Be

l (xe
i )

Je
0

− 1

)2

, (7)
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Figure 4: Plot of the barrier function F (Je
l ) for ε = 0.2.

that is defined in such a way that F blows up when Be
l = εJe

0 , but still
vanishes whenever Be

l = Je
0 . Barrier methods are among the most powerful

class of algorithms available for attacking general nonlinear optimization
problems. These techniques converge to at least a local minimum in most
cases, regardless of the convexity characteristics of the objective function and
constraints [22]. Figure 4 shows a plot of the barrier function in Equation (7)
for ε = 0.2.

The objective function f being smooth, it is possible to compute its
gradient ∇f with respect to the positions of the element vertices xe

i . This
gradient is used in a gradient-based optimization procedure.

Mesh vertices can be classified on mesh entities of various dimensions.
Some of the mesh vertices M0

i @ G1
j are classified on model edges. Such

a vertex can only be moved along G1
j , i.e. its position only depends on one

curve parameter t. We have therefore

df

dt
=

∂f

∂xe
i

· dx
e
i

dt

with dxe
i

dt the tangent vector to the curve at point t, that is obtained from
the CAD model.

Other vertices, that are classified on model faces M0
i @ G2

j , can only be
moved along the surface. Two parameters u and v are associated to those
vertices. We have therefore

∂f

∂u
=

∂f

∂xe
i

· ∂x
e
i

∂u
and

∂f

∂v
=

∂f

∂xe
i

· ∂x
e
i

∂v
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with ∂xe
i

∂u and ∂xe
i

∂v the two tangent vectors to the surface at point (u, v).
Those can be computed using the CAD model.

Vertices that are classified on model regions have a complete freedom to
move in every direction of the 3D space, in which case the physical coordi-
nates {x, y, z} are used. Finally, mesh vertices that are classified on model
vertices have no freedom to move, and are excluded from the optimization
problem.

4.2. Optimization Strategy
The problem of untangling curvilinear meshes is defined as

min
xi

f(xi,K, ε), i = 1, . . . , nv.

There is a variety of methods that can be used to solve unconstrained
minimization problems. We have tested several alternatives: interior point
methods implemented in the software package IPOPT [23], as well as L-
BFGS [24] and conjugate gradients [25] algorithms provided by ALGLIB [25].
In the end, the use of conjugate gradients seemed to be the best choice in
terms of computational efficiency.

The most important part of the optimization strategy is indeed to define
the right sequence of optimization problems. Some preliminary remarks can
be made at this point:

• The optimization should not be applied to the whole mesh but locally.
Blobs of elements that surround an invalid element are constructed.
Mesh vertices that lie on the boundary of the blob are fixed.

• It is necessary to apply preconditioning to the optimization problem,
because the scale of parametric or physical coordinates of different
mesh vertices can differ by orders of magnitude, depending on the
model entity on which they are classified. We found that a simple
diagonal preconditioner, based on the norm of the tangent vectors dxe

i
dt

for vertices classified on model edges (respectively ∂xe
i

∂u and ∂xe
i

∂v for
vertices classified on model faces), and unity for vertices classified on
model regions, yields fast and robust convergence.

• In order for the variables to remain in the domain of definition of the
barrier function F , the value of the barrier ε must be lower than the
worst scaled Jacobian of all elements in one given blob. In particular,
ε has to be negative for an initially tangled mesh. Therefore, we com-
pute a sequence of optimization problems with “moving barriers”: ε is
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Figure 5: Optimization process: three successive series of (maximum) 30 conjugate gra-
dient iterations, with their respective log barriers.

increased between each optimization problem, until the desired barrier
value ε̄ is reached. This procedure is illustrated in Figure 5.

The optimization strategy is described in Algorithm 1.

Algorithm 1: Optimization strategy
1 Compute non overlapping element blobs Bk, k = 1 . . . NB ;
2 for k = 1 to NB do
3 repeat
4 compute κ = mine minl

Be
l

Je
0
, e ∈ Bi, l ∈ [1, Nq];

5 if κ < ε̄ then
6 set ε = κ− 0.1 |κ|;
7 solve minxi f(xi,K, ε) for all elements of blob Bk;
8 recompute κ = mine minl

Be
l

Je
0
, e ∈ Bi, l ∈ [1, Nq];

9

10 until κ ≥ ε̄;

As an example, consider a coarse 3D tetrahedral mesh of a sphere, as
presented in Figure 6. The surface of the sphere is described in the CAD
system as one single patch that covers the whole range of spherical coor-
dinates. In order to challenge our optimization strategy, high order nodes
classified on the surface are added along lines in the parameter plane. The
resulting mesh that is presented in the middle image of Figure 6 is clearly

12



Figure 6: Examples of mesh untangling with mesh vertices motions on manifolds. Upper
figures describe the untangling of a 3D coarse mesh of a sphere. The straight sided mesh
(left) is made quadratic (center) and is subsequently untangled (right).

wrong. Our untangling strategy is then successfully applied to the invalid
mesh: the final valid mesh that is presented in Figure 6 has all elements with
scaled Jacobians in the range [0.9, 1.1]. Less than one second is required for
converging. The other example in Figure 6 is a quartic surface mesh that is
untangled using the same procedure.

5. Examples of mesh untangling

5.1. 3D Mechanical parts
Figure 7 shows images of the mesh of a mechanical part before and after

the untangling process. The mesh is composed of 5,605 quadratic tetrahedra
of which 215 have a Je

min/J
e
0 < 0.3. The untangling process was performed

considering 13 blobs of elements. The process for constructing one blob can
be described as follows. One invalid element is initially inserted into the
blob. N layers of elements around the invalid element are inserted in the
blob. Vertices that lie on the boundary of the blob are fixed in order not to
take any risk of invalidating elements outside the blob in the optimization
process. In this process, blobs may of course overlap. A value of N = 2 is
usually sufficient for ensuring the convergence of the optimization process.
Note that this way of building the blobs is not adequate for untangling highly
stretched meshes. This issue will be addressed in the next subsection.
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Initial quadratic mesh Invalid tetrahedra

Some blobs of elements Final untangled mesh

Figure 7: Mesh of a mechanical part that is composed of 5,605 quadratic tetrahedra.
Figures show a surface view of the initial quadratic mesh, a volume view of the 215 invalid
tetrahedra, a view of 10 among 13 blobs of elements used in the optimization process and
the final untangled mesh.
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Figure 8: Mesh of a mechanical part that is composed of 2,988 quadratic tetrahedra.
Figures show a surface view of the initial quadratic mesh, a volume view of the 131 invalid
tetrahedra and the final untangled mesh.

In the example of Figure 7, we take the value N = 2 and the total CPU
time for untangling that mesh is 18 seconds on a standard laptop. A global
optimization procedure involving one single blob of 5,605 elements takes 60
seconds to converge.

Another example is presented on Figure 8. The same parameters as in
the first example is used. The total time needed to untangle the 3 blobs of
elements is now 23 seconds.

5.2. High-lift airfoil
We consider the high-lift airfoil shown in Figure 12. Two straight-sided

meshesM1 andM2, featuring boundary layer-type stretching around every
surface of the airfoil, are generated. M1 is made out of 9,814 triangles, while
M2 contains 3,178 triangles and 3,318 quads. Both meshes are converted to
order 2 to 5 and optimized.

The objective function described in Section 4.1 is designed to untangle
invalid elements that are created by the conversion of straight-sided meshes
to higher order, which happens mainly near convex parts of the geometry.
However, we note that the conversion can also generate elements of lower
quality close to concave parts, as seen in Figure 9. These elements are not
strictly invalid, because their Jacobian is clearly positive everywhere, but
they do not maintain the boundary layer-type size progression imposed in the
straight-sided mesh. In order to remedy this inconvenience, we supplement
the procedure described in Section 4 with a second optimization pass that
controls the maximum Jacobian in the mesh. In the first pass, the objective
function f introduced in Section 4.1 is used in the “moving barrier” procedure
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Figure 9: Detail of the mesh on the suction side of the slat in the high-lift airfoil case:
primary second-order mesh (left), optimized mesh (right).
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Figure 10: Plot of the barrier function F (Je
l ) for ε = 2.75.

mentioned in Section 4.2 to reach the desired minimum Jacobian ε̄min. In
the second pass, we switch to a different objective function f1:

f1(xi,K, ε̄min, ε̄max) = E(xi,K) + F(xi, ε̄min) + F(xi, ε̄max)

where the term F(xi, ε̄min) maintains the minimum Jacobian constraint at
the value ε̄min, while the term F(xi, ε̄max) (plotted in Figure 10) is handled
as a moving barrier that is decreased to reach the desired maximum Jaco-
bian ε̄max. As a result, the elements located near the concave parts of the
geometry also curve to adapt the high-order boundary, as shown in Figure 9.

In boundary layer-type meshes, where elements have high aspect ratio,
the boundary deformation responsible for the mesh tangling is typically large
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Figure 11: Detail of the mesh near the leading edge of the slat in the high-lift airfoil case:
tangled second-order mesh (left), blob definition with a circle representing the geometrical
criterion (center), and untangled mesh (right).

compared to the normal size of the tangled element, but small compared to
its tangential size (see Figure 11). In order to untangle it, several layers must
be curved in the direction normal to the boundary, whereas modifying the
elements that are adjacent in the tangential direction is useless. Therefore,
the blobs in which we apply the optimization procedure can be constructed
by adding a geometrical criterion to the procedure described in Section 5.1,
as illustrated in Figure 11: among the N layers of elements surrounding the
invalid element, only those located within a certain distance are retained.
This distance is defined by multiplying the distance between the straight-
sided and high-order boundaries by a user-defined factor. Given the element
aspect ratio and grid stretching in the boundary layer zone for this test case,
we obtain good results with blobs of N = 6 layers of quads (or N = 12 layers
of triangles) and a distance factor of 12.

We optimize meshes M1 and M2 with ε̄min = 0.4 and ε̄max = 1.6 at
order p = 2 . . . 5. Information about the results is provided in Table 1. The
number of operations needed to compute f and its derivatives depends on
the size of matrix B of Equation (5), i.e. it is a function of Np × Nq. In
table 1, we report Np and Nq for the different mesh orders p. It must be
noted that, for mesh M2, all elements in the boundary layer are quads, so
that Np and Nq correspond to quads. The number of Bézier points Nq for
triangles corresponds to order q = 2(p− 1) while the Jacobians of quads are
of order q = 2p− 1. It is therefore not surprising that the computation time
for untangling quartic meshes is about 10 times larger than to untangle a
quadratic mesh. Quintic meshes (p = 5) however are disappointingly expen-
sive to compute for quads. This problem may be essentially related to the
bad conditioning of the optimization problem. In our implementation, we
use Lagrange equidistant shape functions, which are known to be highly os-
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Mesh p q Np Nq Ninvalid nv t(sec) Je
min/J

e
0

M1 2 2 6 6 51 20, 751 3.0 0.40
M1 3 4 10 15 56 45,452 8.2 0.40
M1 4 6 15 28 64 79,967 20.0 0.40
M1 5 8 21 45 74 124,296 65.2 0.41

M2 2 3 9 16 32 20,751 1.4 0.55
M2 3 5 16 36 34 45,452 7.0 0.50
M2 4 7 25 64 31 79,967 36.3 0.46
M2 5 9 36 100 31 124,296 330.7 0.44

Table 1: Statistics for the high-lift airfoil test case.

cillatory for high orders. The use of polynomial basis with a better Lebesgue
constant such as those of Ref. [26] may improve the results. Nevertheless,
our procedure remains quite efficient for high order meshes of orders that
are required for engineering analysis, i.e. p = 2 and p = 3 [27, 28].

Table 1 may look surprising: the target for the minimum scaled Jacobian
has been taken as ε̄min = 0.4, but the final value of Je

min/J
e
0 is sometimes

quite higher than the threshold. Indeed, in the optimization procedure,
Jacobians are scaled by a constant value Je

0 computed on the initial mesh.
Yet, corner vertices of elements may be changed in the optimization process,
leading to possible changes in values of straight sided Jacobians Je

0 . Thus, the
final value of Je

min/J
e
0 could be lower than the threshold, but the positivity

of the Jacobian is not threatened as long as the optimization procedure is
successful.

Finally, Figure 12 shows a comparison between the linear elastic analogy
and the present procedure for the mesh M1 at p = 2. It illustrates the
failure of the simple elastic analogy approach in presence of highly stretched
boundary layer elements [13], whereas the optimization procedure manages
to untangle the mesh by propagating the high-order boundary deformation
through the neighboring layers of elements.

6. Mesh curvature impact on the explicit time step: a simple idea

6.1. Another measure of deformation
It is shown in Ref. [29] that the conditioning of the operators deriving

from high-order spatial discretization methods can be affected by the curva-
ture of the elements. When using implicit time integration in simulations,
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Figure 12: Quadratic triangular mesh for the high-lift airfoil case. Zoom at the leading
edge of the slat: comparison between the mesh obtained by elastic analogy (upper frame)
and by the present optimization procedure (lower frame).
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(a) (b) (c)

Figure 13: Typical optimization of a two-layer patch around an invalid element of the
Great Barrier Reef 3rd order coarse mesh: (a) initial patch and original linear mesh (in
dashed lines), (b) first optimization based on the Jacobian determinant and (c) second
optimization based on the minimum eigenvalue of the metric matrix M. The blue line is
the coastline given by the CAD model.

this effect has a negative impact on the convergence of iterative linear alge-
bra solvers. With explicit time stepping schemes, it reduces the maximum
time step allowed by the stability restrictions, as explained more thoroughly
in Section 6.2.

The optimization procedure described in Section 4 is very efficient at
producing meshes with scaled Jacobians that are all positive and close to 1.
In mathematical terms, the procedure tends to generate mappings x(X) that
are one-to-one and close to be equiareal (in 2D). As mentioned in Section 4.1,
this is due to the term F that dominates the objective function f for invalid
elements. In comparison, the part E is small, so that the vertices can be
moved enough to fix the tangled elements. In other words, the optimization
procedure tries to untangle high-order elements by recovering the area in 2D
(or the volume in 3D) that they have in the initial straight-sided mesh.

In some cases however, the approximate conservation of the area or vol-
ume may not prevent an untangled element to end up with a wildly different
shape from the original straight-sided one, as illustrated in Figure 13. This
may affect the numerical behaviour of the simulations using such meshes.
For instance, consider the three quadratic triangles shown in Figure 14, that
have a scaled Jacobian strictly constant and equal to one. It is clear that
those triangles have very different interpolation properties in a finite element
computation. Prescribing the Jacobian of the elements is thus required to
ensure the mesh validity, but it is clearly not sufficient for controlling the
mesh quality. The mesh optimization procedure should also be able to con-
trol element lengths, in order to avoid problematic cases like the the one
shown in Figure 13.
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Figure 14: Three second-order triangles with the same area and the same constant Jaco-
bian determinant but obviously leading to different stable time step.

Consider the two triangles of Figure 15. Let A = x,X be the constant
Jacobian matrix of the transformation between the two triangles. The un-
transformed triangle and the transformed triangle have the same surface
(detA = 1). The first fundamental form or metric tensor of the mapping

M = AA∗. (8)

allows to compute variations of lengths. AssumeU to be a vector that defines
a direction in the undeformed space (see Figure 15). Vector U transforms
in AU as it is depicted on the figure. The ratio between the lengths of the
two vectors is written as

l =
‖AU‖
‖U‖ =

√
U∗MU

U∗U
.

1

U2

AU1

M =

(
5 1/2
1/2 1/4

)

Untransformed Transformed
2

1

1/2

A =

(
2 1
0 1/2

)
,

AU2

U1

Figure 15: Two triangles that have the same area. We have here ‖AU1‖
‖U1‖

=
√
37

2
√
2
' 2.15

which is close to
√
λmax(M) =

√
21+
√
377

2
√
2

' 2.247 and ‖AU2‖
‖U2‖

= 1√
5
' 0.447 which is close

to
√
λmin(M) =

√
21−
√
377

2
√

2
' 0.445.
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Then, we have

lmin = min
‖U‖>0

‖AU‖
‖U‖ =

√
λmin(M)

where λmin(M) is the smallest eigenvalue ofM.
Thus, considering the eigenvalues of the metric tensor in addition to the

Jacobian gives a better characterization of the mesh quality. This problem
is well posed in the sense that the only mapping that result in a metric
tensor that has three equal eigenvalues (e.g. the isometry) does not deform
the element. In this perspective, we extend our approach not only to obtain
positive Jacobians but also to control the minimum eigenvalue of M. We
thus look locally at how element lengths are transformed and try to control
the minimum value λmin on all the element.

In two dimensions,M is expressed as:

M =

(
‖x,X‖2 x,X · y,X
x,X · y,X ‖y,X‖2

)
.

And its smallest eigenvalue, λmin can be obtained easily:

λmin(M) = ‖x,X‖2 + ‖y,X‖2 −
√

(‖x,X‖2 − ‖y,X‖2)2 + 4(x,X · y,X)2

For each element blob, we introduce a second stage to the optimization
process described in Section 4. After the optimization of the Jacobian in
the first stage, the same procedure is repeated with a modified objective
function:

f2(xi,K, ε̄, ζ) = E(xi,K) + F(xi, ε̄) + G(xi, ζ)

The term F(xi, ε̄) maintains the minimum Jacobian constraint ε̄, while the
additional term G controls the minimum eigenvalue of the metric tensor:

G(xi, ζ) =

ne∑
e=1

Nq∑
l=1

Ge
l (x

e
i , ζ)

Ge
l (x

e
i , ζ) =

[
log

(
λmin(xe

i )− ζ
1− ζ

)]2
+
(
λmin(xe

i )− 1
)2
.

Unfortunately, due to the square root, λmin is not polynomial. Therefore, it
cannot be expressed as a sum of Bézier polynomials to guarantee that it is
above the objective value everywhere on the element. In practice, the value
of λmin is sampled at the same points as the Jacobian and these additional
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constraints, combined with those on the Jacobian, are enough to preserve
the quality of the elements.

Assuming the usual expansion of Eq. (1) for x, the derivative of λmin

with respect to nodal positions can be computed as

λmin(M),xe
i

= 2

(
x,X −

(‖x,X‖2 − ‖y,X‖2)x,X + 2(x,X · y,X)y,X√
(‖x,X‖2 − ‖y,X‖2)2 + 4(x,X · y,X)2

)
· L(p)i,X

λmin(M),yei
= 2

(
y,X −

(‖y,X‖2 − ‖x,X‖2)y,X + 2(x,X · y,X)x,X√
(‖x,X‖2 − ‖y,X‖2)2 + 4(x,X · y,X)2

)
· L(p)i,X .

Figure 13 shows how optimization on λmin affects the resulting meshes.
Left Figure shows the initial invalid mesh. Algorithm 1 is then applied,
resulting in the mesh of the central figure. This mesh, while perfectly valid,
has elements that are dramatically shrinked in some directions. Finally,
optimization on λmin is applied, resulting on the mesh of the right Figure.
This mesh has element shapes which are very close to those of the straight-
sided mesh.

6.2. Impact of the deformation with explicit time stepping
It is mentioned in Section 6.1 that the deformation of high-order elements

may affect the numerical methods used in simulations through the mapping
x(ξ). Hereafter, we explain how these effects can be characterized by the
deformation measure introduced in Section 6.1, in the particular case of
numerical methods using explicit time stepping schemes to resolve unsteady
phenomena.

With explicit time stepping schemes, the curvature of the elements re-
duces the maximum time step allowed by the stability restrictions through
the Jacobian matrix x,ξ of the mapping x(ξ), as shown in Ref. [29]. This
is illustrated in Figure 16, where the evolution of the maximum time step is
plotted while progressively deforming a grid, for a simple advection problem
solved with a DG spatial discretization and an explicit Runge-Kutta time
integrator. Thus, setting a scaled Jacobian barrier ε̄ closer to 1 tends to
mitigate the adverse effects of high-order mesh curvature.

However, in the simple example of Figure 16, the elements are deformed
in a constant direction. The general results of Ref. [29], as well as our expe-
rience with high-order computations, suggest that there is no simple relation
between the conditioning of the semi-discrete operator and the Jacobian
detx,ξ.
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Figure 16: Impact of the progressive deformation of a structured grid for a scalar advection
problem, solved with the classic explicit 4-stage Runge-Kutta time integrator and a DG
spatial discretization of order k ranging from 1 to 10: deformation of the pattern of
triangular elements of which the structured grid is made up (left), evolution of the time
step ∆t (scaled by the time step ∆t0 for straight-sided elements) as a function of the
scaled Jacobian Jmin/J0 (right). More details can be found in Ref. [29].

Consider a simple scalar advection equation, as a model for more general
hyperbolic systems: find u(x, t) solution of

∂u

∂t
+ V · ∇xu = 0. (9)

The explicit integration in time of the ordinary differential equation resulting
from the discretization of the spatial operator V · ∇x is subject to condi-
tional stability. Linear stability conditions are usually more restrictive than
non-linear stability conditions, so the stability results obtained for the con-
servation law (9) can be applied to non-linear partial differential equations
(PDE’s). These conditions can further be generalized to systems of hyper-
bolic PDE’s by considering that u corresponds to a characteristic variable
of the system and V corresponds to the associated characteristic velocity.
The stability of the system is then driven by the characteristic leading to the
most restrictive stability condition. However, the systems of multidimen-
sional PDE’s of practical interest often have an infinite set of characteristics
forming a Monge cones instead of degenerating into lines. Thus, we are in-
terested in a stability condition that takes all possible directions of V into
consideration, i.e. a condition on the norm ‖V ‖ of V .

This so-called Courant-Friedrichs-Levy (CFL) condition can be defined
as:

‖V ‖∆t ≤ C ∆x (10)
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where ∆t is the stable time step, ∆x is a length that represents the element
size, and C a constant that depends on the numerical method [30]. This con-
dition should be fulfilled everywhere on the element. In the case of straight
sided triangular elements, ∆x is usually chosen as the inner radius of the
triangle.

How does this size definition extend to curvilinear meshes? In order to
find a stability condition of the advection problem on the curved element,
we transform it into a problem on a straight-sided element for which we can
use the stability condition (10). The conservation law (9) is written in a
system of coordinates, x(X), which can be seen as the transformation of
another one, X corresponding to a straight-sided element. The Jacobian
of this transformation is A = x,X . In the system of coordinates X, the
conservation law (9) reads:

∂u

∂t
+ V · A−1︸ ︷︷ ︸

V ′

·∇Xu = 0. (11)

The problems (9) and (11) being equivalent, the stability condition (10) can
be written in the system of coordinates X as:

‖V ′‖∆t = ‖V · A−1‖∆t < C ∆X

where ∆X is the size of the straight-sided element. Let lmin be the smallest
singular value of A so that 1

lmin is the largest singular value of A−1. We have:

‖V A−1‖ < ‖V ‖
lmin

.

The condition:
‖V ‖∆t < C

∆X

lmin . (12)

is then sufficient to satisfy the stability condition (12). Condition (10) can be
seen as the usual CFL condition (10) with an element size ∆x = ∆X/lmin

depending on the smallest singular value lmin of the mapping A, i.e. the
smallest eigenvalue of the metric tensorM = AAT , as defined in Section 6.1.

6.3. Application on a large scale example
In order to show the interest of the deformation measure introduced in

Section 6.1 and Section 6.2 for practical applications, we apply the mesh
optimization procedure to a large-scale oceanic simulation.

The patch of Figure 13 is a very small part of a larger mesh of the Great
Barrier Reef (GBR), in Australia. The GBR is composed of more than 2500
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reefs and islands. This complex topography generates circulation patterns
on a wide range of scales and makes the generation of a curved mesh of this
domain particularly challenging. Second-, third- and fourth-order versions of
two linear meshes of this region are considered. The first mesh is composed
of about 330,000 triangles and the second one, even coarser, is composed of
about 88,000 triangles. Those meshes are presented on Figure 17. In order to
test our method on a difficult case, we use in both meshes a coarse resolution
compared to the small features of the underlying geometrical model, so that
highly curved elements are generated near the boundaries.

On each mesh, we determine the maximum stable time step to solve
the shallow water equations using a discontinuous Galerkin method of the
same polynomial order as the mesh with a fourth-order explicit Runge-Kutta
temporal scheme. The details of the parameterization and the boundary con-
ditions can be found in [31]. For each mesh, an estimation of the maximum
time step is progressively refined through a simple bisection method that
determines the stability by running the simulation for a few iterations and
checking the global norm of the solution.

Table 2 shows the different time steps obtained on linear meshes, on
curvilinear meshes optimized with respect to the scaled Jacobians only and
on meshes further optimized with respect to λmin. By chance, the Jacobian-
based optimization is enough to recover the same time step on the second-
order mesh as on the linear mesh with a requirement of Je

min/J
e
0 = 0.5.

However, this is not the case for the other meshes, even when a high scaled
Jacobian is imposed. On the contrary, on all meshes optimized first with
respect to the scaled Jacobians and then with respect to λmin (using an
objective value of 0.5 in both optimizations), the maximum stable time step
is very close to the maximum stable time step of the same finite element
method on the linear mesh. The CPU time taken by the optimization process
ranges from 5 seconds for the second-order coarse mesh to about 10 minutes
for the fourth-order fine mesh.

7. Conclusions

The ability of generating high order/curvilinear mesh is a prerequisite to
the generalization of high order numerical methods in engineering analysis.
This paper offers a framework that allows to generate such meshes in a robust
and efficient way.

The methodology consists in solving a sequence of optimization prob-
lems in which the deformation of high-order mesh elements, compared to
their linear counterpart, is minimized. The deformation measure is based
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2nd order coarse mesh 4th order coarse mesh 4th order fine mesh

Figure 17: Top: fourth-order coarse curvilinear mesh (88k triangles) of the Great Barrier
Reef, Australia and detail on the Whitsunday islands. Below: closer zoom on Hamilton
Island for different meshes.
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p Je
min/J

e
0 λmin Linear

0.1 0.5 0.1 0.5

Coarse
2 1.7 3.0 2.5 3.1 3.0
3 0.8 0.9 2.0 2.0 1.9
4 0.5 0.5 1.2 1.2 1.2

Fine
2 0.8 1.0 1.4 3.1 3.0
3 0.4 0.5 1.4 2.0 2.0
4 0.4 0.5 0.9 1.3 1.4

Table 2: Maximum stable time step to solve the shallow water with discontinuous Galerkin
method of polynomial order 2 to 4 and an explicit fourth order Runge-Kutta, on linear
meshes, curvilinear meshes optimized for the Jacobians only and curvilinear meshes further
optimized for the metric. The optimization process stops when all the Jacobians or the
eigenvalues of the metric are greater than 0.1 or 0.5.

on the Jacobian of the transformation that maps a high-order element onto
the straight-sided one, which enables to strictly controls the mesh validity.
Optionally, the minimum eigenvalue of the corresponding metric can be used
in a second step, with positive impact on simulations involving explicit time
stepping. Constraints on the maximum deformation are imposed through
moving barriers, in order to guarantee the quality of the high-order mesh
generated. The restriction of the optimization process to blobs of elements
surrounding a tangled element, instead of the whole mesh, make the methods
computationally efficient.

We have tested the new untangling procedure on various other examples
than those presented in this paper, and our conclusions can be summarized
as follows:

• The use of moving log-barriers for imposing Jacobian constraints is
clearly a better solution than using constrained optimization, both in
terms of computational cost and of robustness.

• The energy part (6) of the objective function is not a critical parameter
in the untangling process, its only purpose being most of the time to
ensure a unique solution to the optimization process.

• It is of paramount importance to allow mesh vertices to move on the
model entities they are classified on. This is especially true in 3D where
both surface and volume meshes should be untangled at once.

• The untangling of quadratic meshes using the new technique is very
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fast, robust and not sensitive to any parameter that we have intro-
duced. We consider that issue to be well addressed.

All the material that is presented in this paper is readily available in Gmsh,
the open source mesh generator[9]. We are confident that users will help us
to improve further Gmsh’s high-order mesh generation capabilities. Never-
theless, some direct extensions of this work are already planned.

First, the objective function should somehow take into account the geo-
metrical accuracy of the high order mesh representations. High order vertices
should allow to reduce some norm of the distance between the mesh and the
CAD model.

Then, the influence of element shapes on the numerical solutions should
be investigated. In this paper, we have shown that it is possible to compute
a length quantity representing the size of a curvilinear element and use it to
compute the CFL condition. We should now investigate the influence of mesh
curving on the quality of numerical solutions, especially in computational
fluid dynamics.
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