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Some background

• I am a professor at the University of Liège in Belgium, where I lead a team
of about 15 people in the Montefiore Institute (EECS Dept.), at the
intersection of applied math, scientific computing and engineering physics

• Our research interests include modeling, analysis, algorithm development,
and simulation for problems arising in various areas of engineering and
science

• Current applications: low- and high-frequency electromagnetics, geophysics,
biomedical problems

• We write quite a lot of codes, some released as open source software:
https://gmsh.info, https://getdp.info, https://onelab.info
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of about 15 people in the Montefiore Institute (EECS Dept.), at the
intersection of applied math, scientific computing and engineering physics

• Our research interests include modeling, analysis, algorithm development,
and simulation for problems arising in various areas of engineering and
science

• Current applications: low- and high-frequency electromagnetics, geophysics,
biomedical problems

• We write quite a lot of codes, some released as open source software:
https://gmsh.info, https://getdp.info, https://onelab.info

2

https://gmsh.info
https://getdp.info
https://onelab.info


Some background

• I am a professor at the Université catholique de Louvain in Belgium, where I
lead a team of a dozen researchers in the Institute of Mechanics, Materials
and Civil Engineering

• My main research topics are mesh generation and computational mechanics
• I have been co-operating with Christophe for more than 20 years, a fruitful

collaboration that has led to the creation of Gmsh
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What is Gmsh?

• Gmsh (https://gmsh.info) is an open source 3D finite element mesh
generator with a built-in CAD engine and post-processor

• Includes a graphical user interface (GUI) and can drive any simulation code
through ONELAB

• Today, Gmsh represents about 400k lines of C++ code
• still same 2 core developers; about 100 with ≥ 1 commit
• about 3,000 registered users on the development site

https://gitlab.onelab.info
• about 15,000 downloads per month (70% Windows)
• about 1,000 citations per year – the Gmsh paper is cited about 8,400 times
• Gmsh has probably become one of the most popular (open source) finite

element mesh generators?
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∼ 22 years of Gmsh development in 1 minute
A warm thank you to all the contributors!



https://gmsh.info/doc/gource_faster.mp4
https://gmsh.info/CREDITS.txt


A little bit of history
• Gmsh was started in 1996, as a side project
• 1998: First public release
• 2003: Open Sourced under GNU GPL
• 2006: OpenCASCADE integration (Gmsh 2)
• 2009: IJNME paper and switch to CMake
• 2012: Curvilinear meshing and quad meshing
• 2013: Homology and ONELAB solver interface
• 2015: Multi-Threaded 1D and 2D meshing (coarse-grained)
• 2017: Boolean operations and switch to Git (Gmsh 3)
• 2018: C++, C, Python and Julia API (Gmsh 4)
• 2019: Multi-Threaded 3D meshing (fine-grained), robust STL remeshing
• 2022: GmshFEM, GmshDDM, Fortran API, Quasi-structured quad meshing
• 2024: XAO support, hex-dominant meshes
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Strategic choices

• Design goals: fast, light and user-friendly
• Written in simple C++
• GUIs: FLTK (desktop), UIKit (iOS), Android
• OpenGL graphics
• Highly portable (OSes & compilers)
• Easy to distribute & install: zero dependencies on installation

• Handling of numerous third party libraries
• Build system based on CMake – everything is optional
• Some libs integrated and redistributed directly in gmsh/contrib (HXT,

BAMG, Concorde, ...)
• Funding

• Hobby until 2006, then industry, Wallonia, Belgium & EU
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Strategic choices

• Community infrastructure
• Our own (using GitLab) to enable public/private parts

(https://gitlab.onelab.info/gmsh/gmsh)
• Continuous integration and delivery (CI/CD) of Gmsh app and Gmsh SDK

on Windows, Linux and macOS
• Web site (https://gmsh.info) with documentation, tutorials, etc.
• Scientific aspects of algorithms detailed in journal papers

• Licensing
• Gmsh is distributed under the GNU General Public License v2 or later, with

exceptions to allow for easier linking with external libraries
• We double-license to enable embedding in commercial codes
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Basic concepts

• Gmsh is based around four modules: Geometry, Mesh, Solver and
Post-processing

• Gmsh can be used at 3 levels
• Through the GUI
• Through the dedicated .geo language
• Through the C++, C, Python, Julia and Fortran API

• Main characteristics
• All algorithms are written in terms of abstract model entities, using a

Boundary REPresentation (BREP) approach
• Gmsh never translates from one CAD format to another; it directly accesses

each CAD kernel API (OpenCASCADE, Built-in, ...)
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Basic concepts
The goal is to deal with very different underlying data representations in a

transparent manner
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Geometry module

Under the hood, 4 types of model entities are defined:
1. Model points G0

i that are topological entities of dimension 0
2. Model curves G1

i that are topological entities of dimension 1
3. Model surfaces G2

i that are topological entities of dimension 2
4. Model volumes G3

i that are topological entities of dimension 3
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Geometry module

• Model entities are topological entities, i.e., they only deal with adjacencies in
the model; a bi-directional data structure represents the graph of adjacencies

G0
i ⇌ G1

i ⇌ G2
i ⇌ G3

i

• Any model is able to build its list of adjacencies of any dimension using local
operations

• The BRep is extended with non-manifold features: adjacent entities, and
embedded (internal) entities

• Model entities can be either CAD entities (e.g. from the built-in or
OpenCASCADE kernel) or discrete entities (defined by a mesh, e.g. STL)
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Geometry module
The geometry of a CAD model entity depends on the solid modeler kernel for its
underlying representation. Solid modelers usually provide a parametrization of
the shapes, i.e., a mapping:

p ∈ Rd 7→ x ∈ R3

1. The geometry of a model point G0
i is simply its 3-D location xi = (xi, yi, zi)

2. The geometry of a model curve G1
i is its underlying curve Ci with its

parametrization p(t) ∈ Ci, t ∈ [t1, t2]
3. The geometry of a model surface G2

i is its underlying surface Si with its
parametrization p(u, v) ∈ Si

4. The geometry associated to a model volume is R3

13



Geometry module

Point p located on a curve C that is itself embedded in a surface S
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Geometry module
Operations on CAD model entities are performed directly within their respective
CAD kernels:

• There is no common internal geometrical representation
• Rather, Gmsh directly performs the operations (translation, rotation,

intersection, union, fragments, ...) on the native geometrical representation
using each CAD kernel’s own API

15



Geometry module
Discrete model entities are defined by a mesh (e.g. STL):

• They can be equipped with a geometry through a reparametrization
procedure

• The parametrization is then used for meshing, in exactly the same way as for
CAD entities

16



Mesh module

• Gmsh implements several meshing algorithms with specific characteristics
• 1D, 2D and 3D
• Structured, unstructured and hybrid
• Isotropic and anisotropic
• Straight-sided and curved
• From standard CAD data or from STL through reparametrization

• Built-in interfaces to external mesh generators (BAMG, MMG3D, Netgen)

17



Mesh module

Typical CAD kernel idiosyncrasies: seam edges and degenerated edges

18



Mesh module

Typical CAD kernel idiosyncrasies: seam edges and degenerated edges

18



Mesh module
• Mesh data is made of elements (points, lines, triangles, quadrangles,

tetrahedra, hexahedra, ...) defined by an ordered list of their nodes

• Elements and nodes are stored (classified) in the model entity they
discretize:

• A model point will thus contain a mesh element of type point, as well as a
mesh node

• A model curve will contain line elements as well as its interior nodes, while
its boundary nodes will be stored in the bounding model points

• A model surface will contain triangular and/or quadrangular elements and all
the nodes not classified on its boundary or on its embedded entities (curves
and points)

• A model volume will contain tetrahedra, hexahedra, etc. and all the nodes
not classified on its boundary or on its embedded entities (surfaces, curves
and points)
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Mesh module

This mesh data structure allows to easily
and efficiently handle the creation,
modification and destruction of
conformal finite element meshes

20



Solver module

• Gmsh implements a ONELAB (https://onelab.info) server to pilot
external solvers, called “clients”

• Example client: GetDP finite element solver (https://getdp.info)

• The ONELAB interface
allows to call such clients
and have them share
parameters and modeling
information

• Parameters are directly
controllable from the
GUI

21
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Solver module

• The implementation is based on a client-server model, with a server-side
database and local or remote clients communicating in-memory or through
TCP/IP sockets

• Contrary to most solver interfaces, the ONELAB server has no a priori
knowledge about any specifics (input file format, syntax, ...) of the clients

• This is made possible by having any simulation preceded by an analysis
phase, during which the clients are asked to upload their parameter set to
the server

• The issues of completeness and consistency of the parameter sets are
completely dealt with on the client side: the role of ONELAB is limited to
data centralization, modification and re-dispatching
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Post-processing module

• Post-processing data is made of views
• A view stores both display options and data (unless the view is an alias of

another view)

• View data can contain several steps (e.g. to store time series) and can be
either linked to one or more models (mesh-based data, as stored in .msh or
.med files) or independent from any model (list-based data, as stored in
parsed .pos files)

• Data is interpolated through arbitrary polynomial interpolation schemes;
automatic mesh refinement is used for adaptive visualization of high-order
views

• Various plugins exist to create and modify views

23
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Post-processing module
• Cuts, iso-curves and vectors
• Elevation maps
• Streamlines
• Adaptive high-order visualization

24



Recent developments: last 5 years

• Application Programming Interface (API)
• Multi-Threaded meshing
• Robust STL remeshing based on parametrizations
• Quasi-structured quad meshing
• GmshFEM and GmshDDM

25



Application Programming Interface

Gmsh 4 introduces a new stable Application Programming Interface (API) for
C++, C, Python, Julia and Fortran, with the following design goals:

• Allow to do everything that can be done in .geo files
• ... and then much more!

• Be robust, in particular to wrong input data (i.e. “never crash”)
• Be efficient; but still allow to do simple things, simply
• Be maintainable over the long run

26



Application Programming Interface

To achieve these goals the Gmsh API
• is purely functional
• only uses basic types from the target language (C++, C, Python, Julia and

Fortran)
• is automatically generated from a master API description file
• is fully documented

27



Application Programming Interface

import gmsh

gmsh. initialize ()
gmsh.model .add(" boolean ")

R = 1.4; Rs = R*.7; Rt = R*1.25

gmsh.model .occ. addBox (-R,-R,-R, 2*R ,2*R ,2*R, 1)
gmsh.model .occ. addSphere (0,0,0,Rt , 2)
gmsh.model .occ. intersect ([(3 , 1)], [(3 , 2)] , 3)
gmsh.model .occ. addCylinder (-2*R,0,0, 4*R,0,0, Rs , 4)
gmsh.model .occ. addCylinder (0 ,-2*R,0, 0 ,4*R,0, Rs , 5)
gmsh.model .occ. addCylinder (0 ,0, -2*R, 0 ,0 ,4*R, Rs , 6)
gmsh.model .occ.fuse ([(3 , 4), (3, 5)] , [(3 , 6)], 7)
gmsh.model .occ.cut ([(3 , 3)] , [(3, 7)] , 8)

gmsh.model .occ. synchronize ()
gmsh.model .mesh. generate (3)
gmsh.fltk.run ()
gmsh. finalize ()

gmsh/examples/api/boolean.py

28
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Application Programming Interface
... or using the C++ API:

# include <gmsh.h>

int main(int argc , char ** argv)
{

gmsh :: initialize (argc , argv );
gmsh :: model :: add(" boolean ");

double R = 1.4, Rs = R*.7, Rt = R *1.25;

std :: vector <std ::pair <int , int > > ov;
std :: vector <std :: vector <std ::pair <int , int > > > ovv;
gmsh :: model :: occ :: addBox (-R,-R,-R, 2*R ,2*R ,2*R, 1);
gmsh :: model :: occ :: addSphere (0,0,0,Rt , 2);
gmsh :: model :: occ :: intersect ({{3 , 1}}, {{3, 2}}, ov , ovv , 3);
gmsh :: model :: occ :: addCylinder (-2*R,0,0, 4*R,0,0, Rs , 4);
gmsh :: model :: occ :: addCylinder (0,-2*R,0, 0,4*R,0, Rs , 5);
gmsh :: model :: occ :: addCylinder (0,0 ,-2*R, 0,0,4*R, Rs , 6);
gmsh :: model :: occ :: fuse ({{3 , 4}, {3, 5}}, {{3, 6}}, ov , ovv , 7);
gmsh :: model :: occ :: cut ({{3 , 3}}, {{3, 7}}, ov , ovv , 8);

gmsh :: model :: occ :: synchronize ();

gmsh :: model :: mesh :: generate (3);
gmsh :: fltk :: run ();
gmsh :: finalize ();
return 0;

}

gmsh/examples/api/boolean.cpp

29
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Application Programming Interface

In addition to CAD creation and meshing, the API can be used to
• Access mesh data (getNodes, getElements)
• Generate interpolation (getBasisFunctions) and integration

(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

• Create post-processing views
• Run the graphical user-interface
• Build custom graphical user-interfaces, e.g. for domain-specific codes (see

gmsh/examples/api/prepro.py or
gmsh/examples/api/custom gui.py) or co-post-processing via ONELAB

30
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Application Programming Interface

In order to make this API easy to use, we publish a binary Software Development
Toolkit (SDK):

• Continuously delivered (for each commit in master), like the Gmsh app
• Contains the dynamic Gmsh library together with the corresponding C++/C

header files, and Python, Julia and Fortran modules

31



Multi-Threaded meshing

Most meshing algorithms are now multi-threaded using OpenMP:
• 1D and 2D algorithms are multithreaded using coarse-grained approach, i.e.

several curves/surfaces are meshed concurrently
• The new 3D Delaunay-based algorithm (HXT) is multi-threaded using a

fine-grained approach. It currently lacks several features (hybrid meshes, ...),
which will eventually be supported

You can specify the number of threads with the General.NumThreads option
(set it to 0 to use the system value), or with the -nt command line switch: gmsh
file.geo -3 -nt 8 -algo hxt
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Multi-Threaded meshing

[C. Marot et al., IJNME 2019]
33



Multi-Threaded meshing

AMD EPYC 2x 64-core
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Robust STL remeshing

New pipeline to remesh discrete surfaces (represented by triangulations):
• Automatic construction of a set of parametrizations that form an atlas of

the model
• Each parametrization is guaranteed to be one-to-one, amenable to meshing

using existing algorithms
• New nodes are guaranteed to be on the input triangulation (“no modelling”)
• Optional pre-processing (i.e. edge detection) to color sub-patches if sharp

features need to be preserved

[P. A. Beaufort et al., JCP 2020]
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Robust STL remeshing

Batman STL mesh
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Robust STL remeshing

Automatic atlas creation: each patch is provably parametrizable by solving a
linear PDE, using mean value coordinates
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Robust STL remeshing

Remeshing
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Robust STL remeshing

Automatic atlas creation, this time with feature edge detection
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Robust STL remeshing

Remeshing with feature edge detection

41



Robust STL remeshing

CT scan of an artery: 101 patches created, most because of the large aspect ratio
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Robust STL remeshing

Remeshing of a skull: 715 patches created for reparametrization; mesh adapted
to curvature
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Robust STL remeshing

Remeshing of an X-ray tomography image of a silicon carbide foam by P. Duru,
F. Muller and L. Selle (IMFT, ERC Advanced Grant SCIROCCO): 1,802 patches

created for reparametrization
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Quasi-structured quad meshing
New experimental algorithm for full-quad meshes [M. Reberol et al. 2021]

Compute a (scaled) cross-field with multilevel diffusion
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Quasi-structured quad meshing

Build a unstructured quadrilateral mesh with a frontal approach guided by the
scaled cross field
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Quasi-structured quad meshing

Pattern-based quadrilateral meshing and cavity remeshing to eliminate
unnecessary irregular vertices while preserving the cross field singularities
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Quasi-structured quad meshing

The final quad mesh is very similar to the one obtained with the global
parametrization approach and has the same number of irregular vertices
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Quasi-structured quad meshing

• “Block” model: 533 surfaces,
1584 curves, 261.5k vertices,
261.6k quads

• Average SICN quality: 0.87
(minimum: 0.11)

• 58 sec. (initial unstructured
quad mesh) + 33 sec.
(quasi-structured improvement)
on Intel Core i7 4 cores

• Quasi-structured improvement
reduces the number of irregular
from 14.4k to 3.6k
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GmshFEM and GmshDDM
New C++ finite element and domain decomposition libraries based on the Gmsh
API [A. Royer et al. 2022]

• Symbolic symbolic high-level description of weak formulations
• General coupled formulations in 1D, 2D, 2D-axi and 3D

• Arbitrarily high-order Lagrange and hierarchical basis functions
• Scalar and vector fields (L2, H1, H(curl)) on hybrid, curved meshes
• Real and complex arithmetic, single or double precision
• Parallelization and linear algebra backends:

• GmshFEM multi-threaded using OpenMP, linear algebra using Eigen
and PETSc, eigensolver using SLEPc

• GmshDDM: distributed memory parallelization using MPI, iterative
Krylov solver using PETSc (incl. HPDDM)
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GmshFEM and GmshDDM
// Domains
Domain omega("omega"), gammaScat ("scat"), gammaExt ("ext");

// Finite element field
Field <Scalar , form :: Form0 > u("u", omega ,

functionSpaceH1 :: HierarchicalH1 ,
6); // polynomial degree 6

// Dirichlet constraint
complex <double > im = complex <double >(0. , 1.);
double k = 50;
Function <complex <double >, Degree :: Degree0 > uInc =

exp <complex <double >>(im * k * z<complex <double > >());
u. addConstraint (gammaScat , -uInc );

// Weak formulation
Formulation <Scalar > f(" helmholtz ");
const string g = " Gauss12 ";

f. integral ( grad(dof(u)), grad(tf(u)), omega , g);
f. integral (- k * k * dof(u) , tf(u) , omega , g);
f. integral (- im * k * dof(u) , tf(u) , gammaExt , g);
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GmshFEM and GmshDDM

Acoustic noise from a turbofan engine intake (1 billion dofs, 1024 partitions)
[P. Marchner et al. 2022]
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Conclusions and perspectives

• Overview of Gmsh and recent developments:
• Application Programming Interface
• New multi-threaded algorithms
• Robust STL remeshing based on parametrizations
• Quasi-structured quad meshing
• GmshFEM and GmshDDM

• Many exciting developments in the pipeline:
• Improved high-order meshing and mesh untangling
• Boundary layers?
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