
Finite Element Meshing with Gmsh

C. Geuzaine1 and J.-F. Remacle2

1Université de Liège 2Université catholique de Louvain

December 10, 2025

Download PDF of these slides: https://gmsh.info/course.pdf

https://gmsh.info/course.pdf

Some background

• I am a professor at the University of Liège in Belgium, where I lead a team
of about 15 people in the Montefiore Institute (EECS Dept.), at the
intersection of applied math, scientific computing and engineering physics

• My research interests include modeling, analysis, algorithm development, and
simulation for problems arising in various areas of engineering and science

• Current applications: low- and high-frequency electromagnetics, geophysics,
biomedical problems

• We write quite a lot of codes, some released as open source software:
https://gmsh.info, https://getdp.info, https://onelab.info

2

https://gmsh.info
https://getdp.info
https://onelab.info

Some background

• I am a professor at the University of Liège in Belgium, where I lead a team
of about 15 people in the Montefiore Institute (EECS Dept.), at the
intersection of applied math, scientific computing and engineering physics

• My research interests include modeling, analysis, algorithm development, and
simulation for problems arising in various areas of engineering and science

• Current applications: low- and high-frequency electromagnetics, geophysics,
biomedical problems

• We write quite a lot of codes, some released as open source software:
https://gmsh.info, https://getdp.info, https://onelab.info

2

https://gmsh.info
https://getdp.info
https://onelab.info

Some background

• I am a professor at the University of Liège in Belgium, where I lead a team
of about 15 people in the Montefiore Institute (EECS Dept.), at the
intersection of applied math, scientific computing and engineering physics

• My research interests include modeling, analysis, algorithm development, and
simulation for problems arising in various areas of engineering and science

• Current applications: low- and high-frequency electromagnetics, geophysics,
biomedical problems

• We write quite a lot of codes, some released as open source software:
https://gmsh.info, https://getdp.info, https://onelab.info

2

https://gmsh.info
https://getdp.info
https://onelab.info

Some background

• I am a professor at the Université catholique de Louvain in Belgium, where I
lead a team of a dozen researchers in the Institute of Mechanics, Materials
and Civil Engineering

• My main research topics are mesh generation and computational mechanics
• I have been co-operating with Christophe for more than 20 years, a fruitful

collaboration that has led to the creation of Gmsh

3

Some background

• I am a professor at the Université catholique de Louvain in Belgium, where I
lead a team of a dozen researchers in the Institute of Mechanics, Materials
and Civil Engineering

• My main research topics are mesh generation and computational mechanics
• I have been co-operating with Christophe for more than 20 years, a fruitful

collaboration that has led to the creation of Gmsh

3

General overview of Gmsh

First model and mesh

Ingredients for unstructured triangulations

Surface meshing

Building the optimal mesh

Unstructured quad and hex meshing

4

General overview of Gmsh

What is Gmsh?

• Gmsh (https://gmsh.info) is an open source 3D finite element mesh
generator with a built-in CAD engine and post-processor

• Includes a graphical user interface (GUI) and can drive any simulation code
through ONELAB

• Today, Gmsh represents about 400k lines of C++ code
• still same 2 core developers; about 100 with ≥ 1 commit
• about 3,500 registered users on the development site

https://gitlab.onelab.info
• about 20,000 downloads per month (70% Windows)
• about 1,000 citations per year – the Gmsh paper is cited about 10,000 times
• Gmsh has become one of the most popular open source finite element mesh

generators worldwide

6

https://gmsh.info
https://gitlab.onelab.info

What is Gmsh?

• Gmsh (https://gmsh.info) is an open source 3D finite element mesh
generator with a built-in CAD engine and post-processor

• Includes a graphical user interface (GUI) and can drive any simulation code
through ONELAB

• Today, Gmsh represents about 400k lines of C++ code
• still same 2 core developers; about 100 with ≥ 1 commit
• about 3,500 registered users on the development site

https://gitlab.onelab.info
• about 20,000 downloads per month (70% Windows)
• about 1,000 citations per year – the Gmsh paper is cited about 10,000 times
• Gmsh has become one of the most popular open source finite element mesh

generators worldwide

6

https://gmsh.info
https://gitlab.onelab.info

∼ 25 years of Gmsh development in 1 minute
A warm thank you to all the contributors!

https://gmsh.info/doc/gource_faster.mp4
https://gmsh.info/CREDITS.txt

A little bit of history
• Gmsh was started in 1996, as a side project
• 1998: First public release
• 2003: Open Sourced under GNU GPL
• 2006: OpenCASCADE integration (Gmsh 2)
• 2009: IJNME paper and switch to CMake
• 2012: Curvilinear meshing and quad meshing
• 2013: Homology and ONELAB solver interface
• 2015: Multi-Threaded 1D and 2D meshing (coarse-grained)
• 2017: Boolean operations and switch to Git (Gmsh 3)
• 2018: C++, C, Python and Julia API (Gmsh 4)
• 2019: Multi-Threaded 3D meshing (fine-grained), STL remeshing
• 2021: GmshFEM, Quasi-structured quad meshing
• 2023: GmshDDM, Fortran API

8

Strategic choices

• Design goals: fast, light and user-friendly
• Written in simple C++
• GUIs: FLTK (desktop), UIKit (iOS), Android
• OpenGL graphics
• Highly portable (OSes & compilers)
• Easy to distribute & install: zero dependencies on installation

• Handling of numerous third party libraries
• Build system based on CMake – everything is optional
• Some libs integrated and redistributed directly in gmsh/contrib (HXT,

BAMG, Concorde, ...)
• Funding

• Hobby until 2006, then industry, Wallonia, Belgium & EU

9

Strategic choices

• Design goals: fast, light and user-friendly
• Written in simple C++
• GUIs: FLTK (desktop), UIKit (iOS), Android
• OpenGL graphics
• Highly portable (OSes & compilers)
• Easy to distribute & install: zero dependencies on installation

• Handling of numerous third party libraries
• Build system based on CMake – everything is optional
• Some libs integrated and redistributed directly in gmsh/contrib (HXT,

BAMG, Concorde, ...)

• Funding
• Hobby until 2006, then industry, Wallonia, Belgium & EU

9

Strategic choices

• Design goals: fast, light and user-friendly
• Written in simple C++
• GUIs: FLTK (desktop), UIKit (iOS), Android
• OpenGL graphics
• Highly portable (OSes & compilers)
• Easy to distribute & install: zero dependencies on installation

• Handling of numerous third party libraries
• Build system based on CMake – everything is optional
• Some libs integrated and redistributed directly in gmsh/contrib (HXT,

BAMG, Concorde, ...)
• Funding

• Hobby until 2006, then industry, Wallonia, Belgium & EU

9

Strategic choices

• Community infrastructure
• Our own (using GitLab) to enable public/private parts

(https://gitlab.onelab.info/gmsh/gmsh)
• Continuous integration and delivery (CI/CD) of Gmsh app and Gmsh SDK

on Windows, Linux and macOS
• Web site (https://gmsh.info) with documentation, tutorials, etc.
• Scientific aspects of algorithms detailed in journal papers

• Licensing
• Gmsh is distributed under the GNU General Public License v2 or later, with

exceptions to allow for easier linking with external libraries
• We double-license to enable embedding in commercial codes

10

https://gitlab.onelab.info/gmsh/gmsh
https://gmsh.info

Strategic choices

• Community infrastructure
• Our own (using GitLab) to enable public/private parts

(https://gitlab.onelab.info/gmsh/gmsh)
• Continuous integration and delivery (CI/CD) of Gmsh app and Gmsh SDK

on Windows, Linux and macOS
• Web site (https://gmsh.info) with documentation, tutorials, etc.
• Scientific aspects of algorithms detailed in journal papers

• Licensing
• Gmsh is distributed under the GNU General Public License v2 or later, with

exceptions to allow for easier linking with external libraries
• We double-license to enable embedding in commercial codes

10

https://gitlab.onelab.info/gmsh/gmsh
https://gmsh.info

Basic concepts

• Gmsh is based around four modules: Geometry, Mesh, Solver and
Post-processing

• Gmsh can be used at 3 levels
• Through the GUI
• Through the dedicated .geo scripting language
• Through the C++, C, Python, Julia and Fortran API

• Main characteristics
• All algorithms are written in terms of abstract model entities, using a

Boundary REPresentation (BREP) approach
• Gmsh never translates from one CAD format to another; it directly accesses

each CAD kernel API (OpenCASCADE, Built-in, ...)

11

Basic concepts

• Gmsh is based around four modules: Geometry, Mesh, Solver and
Post-processing

• Gmsh can be used at 3 levels
• Through the GUI
• Through the dedicated .geo scripting language
• Through the C++, C, Python, Julia and Fortran API

• Main characteristics
• All algorithms are written in terms of abstract model entities, using a

Boundary REPresentation (BREP) approach
• Gmsh never translates from one CAD format to another; it directly accesses

each CAD kernel API (OpenCASCADE, Built-in, ...)

11

Basic concepts
The goal is to deal with very different underlying data representations in a

transparent manner

12

Basic concepts
The goal is to deal with very different underlying data representations in a

transparent manner

12

Basic concepts
The goal is to deal with very different underlying data representations in a

transparent manner

12

Geometry module

Under the hood, 4 types of model entities are defined:
1. Model points G0

i that are topological entities of dimension 0
2. Model curves G1

i that are topological entities of dimension 1
3. Model surfaces G2

i that are topological entities of dimension 2
4. Model volumes G3

i that are topological entities of dimension 3

13

Geometry module

• Model entities are topological entities, i.e., they only deal with adjacencies in
the model; a bi-directional data structure represents the graph of adjacencies

G0
i ⇌ G1

i ⇌ G2
i ⇌ G3

i

• Any model is able to build its list of adjacencies of any dimension using local
operations

• The BRep is extended with non-manifold features: adjacent entities, and
embedded (internal) entities

• Model entities can be either CAD entities (e.g. from the built-in or
OpenCASCADE kernel) or discrete entities (defined by a mesh, e.g. STL)

14

Geometry module

• Model entities are topological entities, i.e., they only deal with adjacencies in
the model; a bi-directional data structure represents the graph of adjacencies

G0
i ⇌ G1

i ⇌ G2
i ⇌ G3

i

• Any model is able to build its list of adjacencies of any dimension using local
operations

• The BRep is extended with non-manifold features: adjacent entities, and
embedded (internal) entities

• Model entities can be either CAD entities (e.g. from the built-in or
OpenCASCADE kernel) or discrete entities (defined by a mesh, e.g. STL)

14

Geometry module

• Model entities are topological entities, i.e., they only deal with adjacencies in
the model; a bi-directional data structure represents the graph of adjacencies

G0
i ⇌ G1

i ⇌ G2
i ⇌ G3

i

• Any model is able to build its list of adjacencies of any dimension using local
operations

• The BRep is extended with non-manifold features: adjacent entities, and
embedded (internal) entities

• Model entities can be either CAD entities (e.g. from the built-in or
OpenCASCADE kernel) or discrete entities (defined by a mesh, e.g. STL)

14

Geometry module
The geometry of a CAD model entity depends on the solid modeler kernel for its
underlying representation. Solid modelers usually provide a parametrization of
the shapes, i.e., a mapping:

p ∈ Rd 7→ x ∈ R3

1. The geometry of a model point G0
i is simply its 3-D location xi = (xi, yi, zi)

2. The geometry of a model curve G1
i is its underlying curve Ci with its

parametrization p(t) ∈ Ci, t ∈ [t1, t2]
3. The geometry of a model surface G2

i is its underlying surface Si with its
parametrization p(u, v) ∈ Si

4. The geometry associated to a model volume is R3

15

Geometry module

Point p located on a curve C that is itself embedded in a surface S

16

Geometry module
Operations on CAD model entities are performed directly within their respective
CAD kernels:

• There is no common internal geometrical representation
• Rather, Gmsh directly performs the operations (translation, rotation,

intersection, union, fragments, ...) on the native geometrical representation
using each CAD kernel’s own API

17

Geometry module
Discrete model entities are defined by a mesh (e.g. STL):

• They can be equipped with a geometry through a reparametrization
procedure

• The parametrization is then used for meshing, in exactly the same way as for
CAD entities

18

Mesh module

• A (conformal) finite element mesh of a model is a tessellation of its
geometry by geometrical elements of various shapes (lines, triangles,
quadrangles, tetrahedra, prisms, hexahedra, pyramids), arranged in such a
way that if two of them intersect, they do so along a face, an edge or a
node, and not otherwise

• Gmsh implements several meshing algorithms with specific characteristics
• 1D, 2D and 3D
• Structured, unstructured and hybrid
• Isotropic and anisotropic
• Straight-sided and curved
• From standard CAD data or from STL through reparametrization

• Built-in interfaces to external mesh generators (BAMG [F. Hecht, 1998],
MMG3D [C. Dobrzynski et al., 2012], Netgen [J. Schoeberl, 1997])

19

Mesh module

• A (conformal) finite element mesh of a model is a tessellation of its
geometry by geometrical elements of various shapes (lines, triangles,
quadrangles, tetrahedra, prisms, hexahedra, pyramids), arranged in such a
way that if two of them intersect, they do so along a face, an edge or a
node, and not otherwise

• Gmsh implements several meshing algorithms with specific characteristics
• 1D, 2D and 3D
• Structured, unstructured and hybrid
• Isotropic and anisotropic
• Straight-sided and curved
• From standard CAD data or from STL through reparametrization

• Built-in interfaces to external mesh generators (BAMG [F. Hecht, 1998],
MMG3D [C. Dobrzynski et al., 2012], Netgen [J. Schoeberl, 1997])

19

Mesh module

• A (conformal) finite element mesh of a model is a tessellation of its
geometry by geometrical elements of various shapes (lines, triangles,
quadrangles, tetrahedra, prisms, hexahedra, pyramids), arranged in such a
way that if two of them intersect, they do so along a face, an edge or a
node, and not otherwise

• Gmsh implements several meshing algorithms with specific characteristics
• 1D, 2D and 3D
• Structured, unstructured and hybrid
• Isotropic and anisotropic
• Straight-sided and curved
• From standard CAD data or from STL through reparametrization

• Built-in interfaces to external mesh generators (BAMG [F. Hecht, 1998],
MMG3D [C. Dobrzynski et al., 2012], Netgen [J. Schoeberl, 1997])

19

Mesh module

Typical CAD kernel idiosyncrasies: seam edges and degenerated edges

20

Mesh module

Typical CAD kernel idiosyncrasies: seam edges and degenerated edges

20

Mesh module
• Mesh data is made of elements (points, lines, triangles, quadrangles,

tetrahedra, hexahedra, ...) defined by an ordered list of their nodes

• Elements and nodes are stored (classified) in the model entity they
discretize:

• A model point will thus contain a mesh element of type point, as well as a
mesh node

• A model curve will contain line elements as well as its interior nodes, while
its boundary nodes will be stored in the bounding model points

• A model surface will contain triangular and/or quadrangular elements and all
the nodes not classified on its boundary or on its embedded entities (curves
and points)

• A model volume will contain tetrahedra, hexahedra, etc. and all the nodes
not classified on its boundary or on its embedded entities (surfaces, curves
and points)

21

Mesh module
• Mesh data is made of elements (points, lines, triangles, quadrangles,

tetrahedra, hexahedra, ...) defined by an ordered list of their nodes
• Elements and nodes are stored (classified) in the model entity they

discretize:

• A model point will thus contain a mesh element of type point, as well as a
mesh node

• A model curve will contain line elements as well as its interior nodes, while
its boundary nodes will be stored in the bounding model points

• A model surface will contain triangular and/or quadrangular elements and all
the nodes not classified on its boundary or on its embedded entities (curves
and points)

• A model volume will contain tetrahedra, hexahedra, etc. and all the nodes
not classified on its boundary or on its embedded entities (surfaces, curves
and points)

21

Mesh module
• Mesh data is made of elements (points, lines, triangles, quadrangles,

tetrahedra, hexahedra, ...) defined by an ordered list of their nodes
• Elements and nodes are stored (classified) in the model entity they

discretize:
• A model point will thus contain a mesh element of type point, as well as a

mesh node

• A model curve will contain line elements as well as its interior nodes, while
its boundary nodes will be stored in the bounding model points

• A model surface will contain triangular and/or quadrangular elements and all
the nodes not classified on its boundary or on its embedded entities (curves
and points)

• A model volume will contain tetrahedra, hexahedra, etc. and all the nodes
not classified on its boundary or on its embedded entities (surfaces, curves
and points)

21

Mesh module
• Mesh data is made of elements (points, lines, triangles, quadrangles,

tetrahedra, hexahedra, ...) defined by an ordered list of their nodes
• Elements and nodes are stored (classified) in the model entity they

discretize:
• A model point will thus contain a mesh element of type point, as well as a

mesh node
• A model curve will contain line elements as well as its interior nodes, while

its boundary nodes will be stored in the bounding model points

• A model surface will contain triangular and/or quadrangular elements and all
the nodes not classified on its boundary or on its embedded entities (curves
and points)

• A model volume will contain tetrahedra, hexahedra, etc. and all the nodes
not classified on its boundary or on its embedded entities (surfaces, curves
and points)

21

Mesh module
• Mesh data is made of elements (points, lines, triangles, quadrangles,

tetrahedra, hexahedra, ...) defined by an ordered list of their nodes
• Elements and nodes are stored (classified) in the model entity they

discretize:
• A model point will thus contain a mesh element of type point, as well as a

mesh node
• A model curve will contain line elements as well as its interior nodes, while

its boundary nodes will be stored in the bounding model points
• A model surface will contain triangular and/or quadrangular elements and all

the nodes not classified on its boundary or on its embedded entities (curves
and points)

• A model volume will contain tetrahedra, hexahedra, etc. and all the nodes
not classified on its boundary or on its embedded entities (surfaces, curves
and points)

21

Mesh module
• Mesh data is made of elements (points, lines, triangles, quadrangles,

tetrahedra, hexahedra, ...) defined by an ordered list of their nodes
• Elements and nodes are stored (classified) in the model entity they

discretize:
• A model point will thus contain a mesh element of type point, as well as a

mesh node
• A model curve will contain line elements as well as its interior nodes, while

its boundary nodes will be stored in the bounding model points
• A model surface will contain triangular and/or quadrangular elements and all

the nodes not classified on its boundary or on its embedded entities (curves
and points)

• A model volume will contain tetrahedra, hexahedra, etc. and all the nodes
not classified on its boundary or on its embedded entities (surfaces, curves
and points)

21

Mesh module

This mesh data structure allows to easily
and efficiently handle the creation,
modification and destruction of
conformal finite element meshes

22

Solver module

• Gmsh implements a ONELAB (https://onelab.info) server to pilot
external solvers, called “clients”

• Example client: GetDP finite element solver (https://getdp.info)

• The ONELAB interface
allows to call such clients
and have them share
parameters and modeling
information

• Parameters are directly
controllable from the
GUI

23

https://onelab.info
https://getdp.info

Solver module

• The implementation is based on a client-server model, with a server-side
database and local or remote clients communicating in-memory or through
TCP/IP sockets

• Contrary to most solver interfaces, the ONELAB server has no a priori
knowledge about any specifics (input file format, syntax, ...) of the clients

• This is made possible by having any simulation preceded by an analysis
phase, during which the clients are asked to upload their parameter set to
the server

• The issues of completeness and consistency of the parameter sets are
completely dealt with on the client side: the role of ONELAB is limited to
data centralization, modification and re-dispatching

24

Solver module

• The implementation is based on a client-server model, with a server-side
database and local or remote clients communicating in-memory or through
TCP/IP sockets

• Contrary to most solver interfaces, the ONELAB server has no a priori
knowledge about any specifics (input file format, syntax, ...) of the clients

• This is made possible by having any simulation preceded by an analysis
phase, during which the clients are asked to upload their parameter set to
the server

• The issues of completeness and consistency of the parameter sets are
completely dealt with on the client side: the role of ONELAB is limited to
data centralization, modification and re-dispatching

24

Post-processing module

• Post-processing data is made of views
• A view stores both display options and data (unless the view is an alias of

another view)

• View data can contain several steps (e.g. to store time series) and can be
either linked to one or more models (mesh-based data, as stored in .msh or
.med files) or independent from any model (list-based data, as stored in
parsed .pos files)

• Data is interpolated through arbitrary polynomial interpolation schemes;
automatic mesh refinement is used for adaptive visualization of high-order
views

• Various plugins exist to create and modify views

25

Post-processing module

• Post-processing data is made of views
• A view stores both display options and data (unless the view is an alias of

another view)
• View data can contain several steps (e.g. to store time series) and can be

either linked to one or more models (mesh-based data, as stored in .msh or
.med files) or independent from any model (list-based data, as stored in
parsed .pos files)

• Data is interpolated through arbitrary polynomial interpolation schemes;
automatic mesh refinement is used for adaptive visualization of high-order
views

• Various plugins exist to create and modify views

25

Post-processing module
• Cuts, iso-curves and vectors
• Elevation maps
• Streamlines
• Adaptive high-order visualization

26

Application Programming Interface

Gmsh 4 introduced a stable Application Programming Interface (API) for C++,
C, Python, Julia and Fortran, with the following design goals:

• Allow to do everything that can be done in .geo scripts

• ... and then much more!
• Be robust, in particular to wrong input data
• Be efficient; but still allow to do simple things, simply
• Be maintainable over the long run

27

Application Programming Interface

Gmsh 4 introduced a stable Application Programming Interface (API) for C++,
C, Python, Julia and Fortran, with the following design goals:

• Allow to do everything that can be done in .geo scripts
• ... and then much more!

• Be robust, in particular to wrong input data
• Be efficient; but still allow to do simple things, simply
• Be maintainable over the long run

27

Application Programming Interface

Gmsh 4 introduced a stable Application Programming Interface (API) for C++,
C, Python, Julia and Fortran, with the following design goals:

• Allow to do everything that can be done in .geo scripts
• ... and then much more!

• Be robust, in particular to wrong input data
• Be efficient; but still allow to do simple things, simply
• Be maintainable over the long run

27

Application Programming Interface

To achieve these goals the Gmsh API
• is purely functional
• only uses basic types from the target language (C++, C, Python, Julia and

Fortran)
• is automatically generated from a master API description file
• is documented

28

Application Programming Interface

In addition to CAD creation and meshing, the API can be used to
• Access mesh data (getNodes, getElements)

• Generate interpolation (getBasisFunctions) and integration
(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

• Create post-processing views
• Run the graphical user-interface
• Build custom graphical user-interfaces, e.g. for domain-specific codes (see

gmsh/examples/api/prepro.py or
gmsh/examples/api/custom gui.py) or co-post-processing via ONELAB

29

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/poisson.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/prepro.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/custom_gui.py

Application Programming Interface

In addition to CAD creation and meshing, the API can be used to
• Access mesh data (getNodes, getElements)
• Generate interpolation (getBasisFunctions) and integration

(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

• Create post-processing views
• Run the graphical user-interface
• Build custom graphical user-interfaces, e.g. for domain-specific codes (see

gmsh/examples/api/prepro.py or
gmsh/examples/api/custom gui.py) or co-post-processing via ONELAB

29

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/poisson.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/prepro.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/custom_gui.py

Application Programming Interface

In addition to CAD creation and meshing, the API can be used to
• Access mesh data (getNodes, getElements)
• Generate interpolation (getBasisFunctions) and integration

(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

• Create post-processing views

• Run the graphical user-interface
• Build custom graphical user-interfaces, e.g. for domain-specific codes (see

gmsh/examples/api/prepro.py or
gmsh/examples/api/custom gui.py) or co-post-processing via ONELAB

29

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/poisson.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/prepro.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/custom_gui.py

Application Programming Interface

In addition to CAD creation and meshing, the API can be used to
• Access mesh data (getNodes, getElements)
• Generate interpolation (getBasisFunctions) and integration

(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

• Create post-processing views
• Run the graphical user-interface

• Build custom graphical user-interfaces, e.g. for domain-specific codes (see
gmsh/examples/api/prepro.py or
gmsh/examples/api/custom gui.py) or co-post-processing via ONELAB

29

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/poisson.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/prepro.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/custom_gui.py

Application Programming Interface

In addition to CAD creation and meshing, the API can be used to
• Access mesh data (getNodes, getElements)
• Generate interpolation (getBasisFunctions) and integration

(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

• Create post-processing views
• Run the graphical user-interface
• Build custom graphical user-interfaces, e.g. for domain-specific codes (see

gmsh/examples/api/prepro.py or
gmsh/examples/api/custom gui.py) or co-post-processing via ONELAB

29

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/poisson.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/prepro.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/custom_gui.py

Application Programming Interface
We publish a binary Software Development Toolkit (SDK):

• Continuously delivered (for each commit in master), like the Gmsh app
• Contains the dynamic Gmsh library together with the corresponding C++/C

header files, and Python, Julia and Fortran modules

30

Download

To download the Gmsh SDK:

• Simplest way:
pip install --upgrade gmsh

• For the latest development version:
pip install -i https://gmsh.info/python-packages-dev

--force-reinstall --no-cache-dir gmsh

• All other options: go to https://gmsh.info

31

https://gmsh.info

Download

To download the Gmsh SDK:

• Simplest way:
pip install --upgrade gmsh

• For the latest development version:
pip install -i https://gmsh.info/python-packages-dev

--force-reinstall --no-cache-dir gmsh

• All other options: go to https://gmsh.info

31

https://gmsh.info

Download

To download the Gmsh SDK:

• Simplest way:
pip install --upgrade gmsh

• For the latest development version:
pip install -i https://gmsh.info/python-packages-dev

--force-reinstall --no-cache-dir gmsh

• All other options: go to https://gmsh.info

31

https://gmsh.info

First model and mesh

First .geo script
Save this script as a text file file.geo:

lc = 0.1; // target mesh size at points
Point (1) = {0, 0, 0, lc};
Point (2) = {1, 0, 0, lc};
Point (3) = {1, 1, 0, lc};
Point (4) = {0, 1, 0, lc};
Line (1) = {1, 2};
Line (2) = {2, 3};
Line (3) = {3, 4};
Line (4) = {4, 1};
Curve Loop (1) = {1, 2, 3, 4};
Plane Surface (1) = {1};

• Run the script interactively with gmsh file.geo
• Or launch the Gmsh app and open the script with the File/Open menu
• Or create a mesh in batch mode with gmsh file.geo -2

33

First .geo script
Save this script as a text file file.geo:

lc = 0.1; // target mesh size at points
Point (1) = {0, 0, 0, lc};
Point (2) = {1, 0, 0, lc};
Point (3) = {1, 1, 0, lc};
Point (4) = {0, 1, 0, lc};
Line (1) = {1, 2};
Line (2) = {2, 3};
Line (3) = {3, 4};
Line (4) = {4, 1};
Curve Loop (1) = {1, 2, 3, 4};
Plane Surface (1) = {1};

• Run the script interactively with gmsh file.geo
• Or launch the Gmsh app and open the script with the File/Open menu
• Or create a mesh in batch mode with gmsh file.geo -2

33

Same in Python using the Gmsh API
Save this as a Python script file.py:

import gmsh
gmsh. initialize ()
lc = 0.1 # mesh size at points
p1 = gmsh.model.geo. addPoint (0, 0, 0, lc)
p2 = gmsh.model.geo. addPoint (1, 0, 0, lc)
p3 = gmsh.model.geo. addPoint (1, 1, 0, lc)
p4 = gmsh.model.geo. addPoint (0, 1, 0, lc)
l1 = gmsh.model.geo. addLine (p1 , p2)
l2 = gmsh.model.geo. addLine (p2 , p3)
l3 = gmsh.model.geo. addLine (p3 , p4)
l4 = gmsh.model.geo. addLine (p4 , p1)
cl = gmsh.model.geo. addCurveLoop ([l1 , l2 , l3 , l4])
gmsh. model.geo. addPlaneSurface ([cl])
gmsh. model.geo. synchronize () # sync CAD kernel data to model
gmsh.fltk.run () # launch the GUI
gmsh. finalize ()

Run with python3 file.py

34

Same in Python using the Gmsh API
Save this as a Python script file.py:

import gmsh
gmsh. initialize ()
lc = 0.1 # mesh size at points
p1 = gmsh.model.geo. addPoint (0, 0, 0, lc)
p2 = gmsh.model.geo. addPoint (1, 0, 0, lc)
p3 = gmsh.model.geo. addPoint (1, 1, 0, lc)
p4 = gmsh.model.geo. addPoint (0, 1, 0, lc)
l1 = gmsh.model.geo. addLine (p1 , p2)
l2 = gmsh.model.geo. addLine (p2 , p3)
l3 = gmsh.model.geo. addLine (p3 , p4)
l4 = gmsh.model.geo. addLine (p4 , p1)
cl = gmsh.model.geo. addCurveLoop ([l1 , l2 , l3 , l4])
gmsh. model.geo. addPlaneSurface ([cl])
gmsh. model.geo. synchronize () # sync CAD kernel data to model
gmsh.fltk.run () # launch the GUI
gmsh. finalize ()

Run with python3 file.py

34

Constructive Solid Geometry (CSG)

https://en.wikipedia.org/wiki/Constructive_solid_geometry

35

https://en.wikipedia.org/wiki/Constructive_solid_geometry

CSG with a .geo script
SetFactory (" OpenCASCADE "); // use OpenCASCADE CAD kernel

R = DefineNumber [1.4 , Min 0.1 , Max 2, Step 0.01 ,
Name " Parameters /Box dimension "];

Rs = DefineNumber [R*.7 , Min 0.1 , Max 2, Step 0.01 ,
Name " Parameters / Cylinder radius "];

Rt = DefineNumber [R*1.25 , Min 0.1 , Max 2, Step 0.01 ,
Name " Parameters / Sphere radius "];

Box (1) = {-R,-R,-R, 2*R ,2*R ,2*R}; // explicit entity tag

Sphere (2) = {0,0,0, Rt};

BooleanIntersection (3) = { Volume {1}; Delete ; }{ Volume {2}; Delete ; };
// delete object and tool

Cylinder (4) = {-2*R,0,0, 4*R,0,0, Rs };
Cylinder (5) = {0,-2*R,0, 0,4*R,0, Rs };
Cylinder (6) = {0,0,-2*R, 0,0,4*R, Rs };

BooleanUnion (7) = { Volume {4}; Delete ; }{ Volume {5 ,6}; Delete ; };
BooleanDifference (8) = { Volume {3}; Delete ; }{ Volume {7}; Delete ; };

36

CSG with a .geo script

gmsh/examples/boolean/boolean.geo

37

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/boolean/boolean.geo

CSG with the Python API
Same example, but using the Python API:

import gmsh

gmsh. initialize ()
gmsh.model .add(" boolean ")

R = 1.4; Rs = R*.7; Rt = R*1.25

gmsh.model .occ. addBox (-R,-R,-R, 2*R ,2*R ,2*R, 1)
gmsh.model .occ. addSphere (0,0,0,Rt , 2)
gmsh.model .occ. intersect ([(3 , 1)], [(3 , 2)] , 3)
gmsh.model .occ. addCylinder (-2*R,0,0, 4*R,0,0, Rs , 4)
gmsh.model .occ. addCylinder (0 ,-2*R,0, 0 ,4*R,0, Rs , 5)
gmsh.model .occ. addCylinder (0 ,0, -2*R, 0 ,0 ,4*R, Rs , 6)
gmsh.model .occ.fuse ([(3 , 4), (3, 5)] , [(3 , 6)], 7)
gmsh.model .occ.cut ([(3 , 3)] , [(3, 7)] , 8)

gmsh.model .occ. synchronize ()
gmsh.model .mesh. generate (3)
gmsh.fltk.run ()
gmsh. finalize ()

gmsh/examples/api/boolean.py

38

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/boolean.py

CSG with the C++ API
... or using the C++ API:

include <gmsh.h>

int main(int argc , char ** argv)
{

gmsh :: initialize (argc , argv);
gmsh :: model :: add(" boolean ");

double R = 1.4, Rs = R*.7, Rt = R *1.25;

std :: vector <std ::pair <int , int > > ov;
std :: vector <std :: vector <std ::pair <int , int > > > ovv;
gmsh :: model :: occ :: addBox (-R,-R,-R, 2*R ,2*R ,2*R, 1);
gmsh :: model :: occ :: addSphere (0,0,0,Rt , 2);
gmsh :: model :: occ :: intersect ({{3 , 1}}, {{3, 2}}, ov , ovv , 3);
gmsh :: model :: occ :: addCylinder (-2*R,0,0, 4*R,0,0, Rs , 4);
gmsh :: model :: occ :: addCylinder (0,-2*R,0, 0,4*R,0, Rs , 5);
gmsh :: model :: occ :: addCylinder (0,0 ,-2*R, 0,0,4*R, Rs , 6);
gmsh :: model :: occ :: fuse ({{3 , 4}, {3, 5}}, {{3, 6}}, ov , ovv , 7);
gmsh :: model :: occ :: cut ({{3 , 3}}, {{3, 7}}, ov , ovv , 8);

gmsh :: model :: occ :: synchronize ();

gmsh :: model :: mesh :: generate (3);
gmsh :: fltk :: run ();
gmsh :: finalize ();
return 0;

}

gmsh/examples/api/boolean.cpp

39

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/boolean.cpp

Ingredients for unstructured meshing

Triangulations

A simplex is a generalization of the notion of a triangle or tetrahedron to
arbitrary dimensions

A triangulation T (S) of the n points S = {p1, . . . , pn} ∈ Rd is a set of non
overlapping simplices that covers exactly the convex hull Ω(S) of the point set,
and leaves no point pi isolated

Points pj are in general position when they do not fall on subvarieties of lower
degree than necessary; in the plane two points should not be coincident, three
points should not fall on a line, four points should not fall on a circle

41

Triangulations

A simplex is a generalization of the notion of a triangle or tetrahedron to
arbitrary dimensions

A triangulation T (S) of the n points S = {p1, . . . , pn} ∈ Rd is a set of non
overlapping simplices that covers exactly the convex hull Ω(S) of the point set,
and leaves no point pi isolated

Points pj are in general position when they do not fall on subvarieties of lower
degree than necessary; in the plane two points should not be coincident, three
points should not fall on a line, four points should not fall on a circle

41

Triangulations

There exist a finite but combinatorial number of triangulations (Catalan
numbers) for a given set of points

In dimension 2, the number of triangles is constant for every triangulation of the
same set of points; this is not true in 3D and in higher dimensions

The Delaunay triangulation is a special triangulation that exists and is unique if
points are in general position

There exist algorithms to generate the Delaunay triangulation in O(n log(n))
complexity! Yet, the constant grows rapidly with the dimension d

42

Triangulations

There exist a finite but combinatorial number of triangulations (Catalan
numbers) for a given set of points

In dimension 2, the number of triangles is constant for every triangulation of the
same set of points; this is not true in 3D and in higher dimensions

The Delaunay triangulation is a special triangulation that exists and is unique if
points are in general position

There exist algorithms to generate the Delaunay triangulation in O(n log(n))
complexity! Yet, the constant grows rapidly with the dimension d

42

Delaunay triangulation

The Delaunay triangulation DT(S) of a point set S has the fundamental
geometrical property that the circumsphere of any simplex is empty
If the empty sphere condition is verified for all simplices, the triangulation T (S)
is said to be a Delaunay triangulation
In dimension 2, DT(S) has interesting properties

43

The Voronöı diagram
Consider a finite set S = {p1, . . . , pn} ⊆ R2 of n distinct points in the plane.
The Voronoi cell Vi of pi ∈ S is the set of points x that are closer to pi than to
any other points of the set:

Vi =
{
x ∈ R2 | ∥x − pi∥ < ∥x − pj∥ , ∀1 ≤ i ≤ n, i ̸= j

}
where ∥x − y∥ is the euclidean distance between x and y

Vi

p j

pl

pi

pk

44

The Voronöı diagram
The Voronoi diagram V (S) is the unique subdivision of the plane into n cells. It
is the union of all Voronoi cells Vp:

v I

Vi

p j

pl

pi

pk

Vl

Ω(S)

45

The Delaunay triangulation
The Delaunay triangulation DT(S) is the geometric dual of the Voronöı diagram

46

The empty circle property

The circumcircle of any triangle in the Delaunay triangulation is empty i.e. it
contains no point of S

• Consider the Delaunay triangle ∆I = pipjpk.
Assume now that point pl ∈ CI where CI is the
circumcircle of ∆I

• By definition, the triple point vI is at equal distance
to pi, pj and pk and no other points of S are closer
to vI than those three points

• Then, if a point like pl exist in S, vI is not a triple
point and triangle ∆I cannot be a Delaunay triangle

pl

C I

∆I

pi

p j

pk

v I

47

The MaxMin property
The Delaunay triangulation DT(S) is angle-optimal: it maximizes the minimum
angle among all possible triangulations

C A

Æ<Ø

pi

p j

CB

a
b1

Ø

Ø b2

γ2

κ1 κ2

λ1 C

C ′

pj

pk

pl

ι2
ι1 γ1

λ2pi

Thales theorem (left) and MaxMin property illustrated (right)

48

Bowyer-Watson algorithm
Let DTn be the Delaunay triangulation of a point set Sn = {p1, . . . , pn} ⊂ R2

that are in general position
The Bowyer-Watson algorithm is an incremental process allowing the insertion of
a given point pn+1 ∈ Ω(Sn) into DTn and to build the Delaunay triangulation
DTn+1 of Sn+1 = {p1, . . . , pn, pn+1}

DTn+1 = DTn − C(DTn, pn+1) + B(DTn, pn+1). (1)

pn+1

C (DTi , pn+1)

49

Bowyer-Watson algorithm
The Delaunay cavity C(Tn, pn+1) is the set of m triangles ∆1, . . . , ∆m ∈ DTn for
which their circumcircle contains pn+1

The Delaunay cavity contains the set of triangles that cannot belong to Tn+1:
the region covered by those invalid triangles should be emptied and
re-triangulated in a Delaunay fashion

pn+1

C (DTi , pn+1)

50

Bowyer-Watson algorithm

pn+1

C (DTi , pn+1)

p j

B(DTi , pn+1)

σ j+1σ j

pn+1

51

Bowyer-Watson algorithm
Super triangles:

p j

pi

pk

pl

Ω(S)

p−1p−4

p−3 p−2

52

DT of n points in n log(n) complexity
• Use Bowyer-Watson algorithm

• Sort the points [N. Amenta, S. Choi, and G. Rote. Incremental constructions
con BRIO, 2003]: the Biased Randomized Insertion Order can e.g. use a
space-filling curve like a Hilbert curve

• Multithreading: distribute the Hilbert curve in M threads

DTk+1 = DTk − C(DTk, pk+1) + B(DTk, pk+1)

DTk

pk+1

C (DTk , pk+1) B(DTk , pk+1)

pk+1

DTk+1

53

DT of n points in n log(n) complexity
• Use Bowyer-Watson algorithm
• Sort the points [N. Amenta, S. Choi, and G. Rote. Incremental constructions

con BRIO, 2003]: the Biased Randomized Insertion Order can e.g. use a
space-filling curve like a Hilbert curve

• Multithreading: distribute the Hilbert curve in M threads

Without sort: O(n1/d) “walking” steps per insertion → overall (best) complexity
of O(n1+ 1

d)

τ

t pk+1

pk

53

DT of n points in n log(n) complexity
• Use Bowyer-Watson algorithm
• Sort the points [N. Amenta, S. Choi, and G. Rote. Incremental constructions

con BRIO, 2003]: the Biased Randomized Insertion Order can e.g. use a
space-filling curve like a Hilbert curve

• Multithreading: distribute the Hilbert curve in M threads

With sort along Hilbert curve: constant number of steps

n 103 104 105 106 103 104 105 106

2D 3D
Nwalk 23 73 230 727 17 38 85 186
t(sec) 3.6 10−3 9.1 10−2 3.98 187 1.2 10−2 1.8 10−1 3.42 73

2D (BRIO) 3D (BRIO)
Nwalk 2.3 2.4 2.5 2.5 2.9 3.0 3.1 3.1
t(sec) 2 10−3 1.5 10−2 1.5 10−1 1.47 9.0 10−3 7.5 10−2 7.8 10−1 7.81

Sorting cost is O(n log(n)) → overall (best) complexity O(n log(n))

53

DT of n points in n log(n) complexity
• Use Bowyer-Watson algorithm
• Sort the points [N. Amenta, S. Choi, and G. Rote. Incremental constructions

con BRIO, 2003]: the Biased Randomized Insertion Order can e.g. use a
space-filling curve like a Hilbert curve

• Multithreading: distribute the Hilbert curve in M threads

DTk+1 = DTk +
M−1∑
i=0

[
−C(DTk, pk+i n

M
) + B(DTk, pk+i n

M
)
]

.

53

Multithreaded meshing in Gmsh

The meshing pipeline is multithreaded using OpenMP:
• 1D and 2D algorithms are multithreaded using coarse-grained approach, i.e.

several curves/surfaces are meshed concurrently
• The new 3D Delaunay-based algorithm (HXT) is multi-threaded using a

fine-grained approach based on Hilbert curve (more precisely a Moore curve)
sort

You can specify the number of threads with the General.NumThreads option
(set it to 0 to use the system value), or with the -nt command line switch:

gmsh file.geo -3 -nt 8 -algo hxt

54

Multithreaded meshing in Gmsh

The meshing pipeline is multithreaded using OpenMP:
• 1D and 2D algorithms are multithreaded using coarse-grained approach, i.e.

several curves/surfaces are meshed concurrently
• The new 3D Delaunay-based algorithm (HXT) is multi-threaded using a

fine-grained approach based on Hilbert curve (more precisely a Moore curve)
sort

You can specify the number of threads with the General.NumThreads option
(set it to 0 to use the system value), or with the -nt command line switch:

gmsh file.geo -3 -nt 8 -algo hxt

54

Multithreaded meshing in Gmsh

• Points are partitioned such that each point belongs to a single thread
• A triangle can only be modified by a thread that owns all of its three nodes
• Triangles that cannot be modified by any thread form a buffer zone

55

Multithreaded meshing in Gmsh

Modification of the partitions to insert the points for which insertion failed
because the point cavity spans multiple partitions:

• Circular shift to move the zero index around the Hilbert/Moore curve
• Coordinates below a random threshold are linearly compressed, whereas

coordinates above the threshold are linearly expanded
56

Multithreaded meshing in Gmsh

[C. Marot et al., IJNME 2019]
57

Multithreaded meshing in Gmsh

AMD EPYC 2x 64-core
58

Multithreaded meshing in Gmsh

AMD EPYC 2x 64-core

59

More ingredients: boundary recovery

Remember the super triangles?
• For conformal finite element mesh generation Gmsh starts from the

boundary mesh, i.e. boundary segments in 2D and boundary triangles in 3D

• An “empty mesh” is created first, triangulating the boundary points
• The boundary segments/triangles are then “recovered” so that they are

edges/faces of the interior triangles/tetrahedra
• In the 3D case Gmsh uses Tetgen’s boundary recovery code [H. Si. Tetgen,

a Delaunay-based quality tetrahedral mesh generator., 2015]
• Then the mesh is refined with (multi-threaded) point insertion

60

More ingredients: boundary recovery

Remember the super triangles?
• For conformal finite element mesh generation Gmsh starts from the

boundary mesh, i.e. boundary segments in 2D and boundary triangles in 3D
• An “empty mesh” is created first, triangulating the boundary points

• The boundary segments/triangles are then “recovered” so that they are
edges/faces of the interior triangles/tetrahedra

• In the 3D case Gmsh uses Tetgen’s boundary recovery code [H. Si. Tetgen,
a Delaunay-based quality tetrahedral mesh generator., 2015]

• Then the mesh is refined with (multi-threaded) point insertion

60

More ingredients: boundary recovery

Remember the super triangles?
• For conformal finite element mesh generation Gmsh starts from the

boundary mesh, i.e. boundary segments in 2D and boundary triangles in 3D
• An “empty mesh” is created first, triangulating the boundary points
• The boundary segments/triangles are then “recovered” so that they are

edges/faces of the interior triangles/tetrahedra
• In the 3D case Gmsh uses Tetgen’s boundary recovery code [H. Si. Tetgen,

a Delaunay-based quality tetrahedral mesh generator., 2015]

• Then the mesh is refined with (multi-threaded) point insertion

60

More ingredients: boundary recovery

Remember the super triangles?
• For conformal finite element mesh generation Gmsh starts from the

boundary mesh, i.e. boundary segments in 2D and boundary triangles in 3D
• An “empty mesh” is created first, triangulating the boundary points
• The boundary segments/triangles are then “recovered” so that they are

edges/faces of the interior triangles/tetrahedra
• In the 3D case Gmsh uses Tetgen’s boundary recovery code [H. Si. Tetgen,

a Delaunay-based quality tetrahedral mesh generator., 2015]
• Then the mesh is refined with (multi-threaded) point insertion

60

More ingredients: mesh improvement
Once a mesh with the desired local mesh size is obtained by point insertion, a
final improvement step is performed to

• locally eliminate badly shaped tetrahedra (e.g. slivers)
• optimize the quality of the mesh by means of specific topological operations

and vertex relocations (flipping, edge removal, smoothing, small polyhedron
reconnection, ...)

61

Surface meshing

Surface meshing

• When mesh generation procedures have access to parametrizations of
surfaces, one can generate a planar mesh in the parametric domain and map
it in 3D —it is an indirect approach

• In Gmsh, surface meshes are generated in the parameter plane (u, v) and
standard “off the shelf” anisotropic 2D meshers are used for generating
surface meshes

• Ensuring that a planar mesh is valid is trivial: all triangles should be
positively oriented

• If the surface parametrization x(u, v) ∈ R3 is regular, then the mapping of
the (u, v) mesh onto the surface is itself valid because the composition of
two regular mappings is regular

63

Surface meshing

• When mesh generation procedures have access to parametrizations of
surfaces, one can generate a planar mesh in the parametric domain and map
it in 3D —it is an indirect approach

• In Gmsh, surface meshes are generated in the parameter plane (u, v) and
standard “off the shelf” anisotropic 2D meshers are used for generating
surface meshes

• Ensuring that a planar mesh is valid is trivial: all triangles should be
positively oriented

• If the surface parametrization x(u, v) ∈ R3 is regular, then the mapping of
the (u, v) mesh onto the surface is itself valid because the composition of
two regular mappings is regular

63

Surface meshing

• When mesh generation procedures have access to parametrizations of
surfaces, one can generate a planar mesh in the parametric domain and map
it in 3D —it is an indirect approach

• In Gmsh, surface meshes are generated in the parameter plane (u, v) and
standard “off the shelf” anisotropic 2D meshers are used for generating
surface meshes

• Ensuring that a planar mesh is valid is trivial: all triangles should be
positively oriented

• If the surface parametrization x(u, v) ∈ R3 is regular, then the mapping of
the (u, v) mesh onto the surface is itself valid because the composition of
two regular mappings is regular

63

Surface meshing

• When mesh generation procedures have access to parametrizations of
surfaces, one can generate a planar mesh in the parametric domain and map
it in 3D —it is an indirect approach

• In Gmsh, surface meshes are generated in the parameter plane (u, v) and
standard “off the shelf” anisotropic 2D meshers are used for generating
surface meshes

• Ensuring that a planar mesh is valid is trivial: all triangles should be
positively oriented

• If the surface parametrization x(u, v) ∈ R3 is regular, then the mapping of
the (u, v) mesh onto the surface is itself valid because the composition of
two regular mappings is regular

63

Surface meshing
In this example, the depicted trimmed surface has no irregular points and the
mesh generation procedure is quite straightforward: the anisotropic
frontal-Delaunay approach from Gmsh was used to produce the mesh, based on
the metric tensor (full rank everywhere)

M = JT J =
(

∥∂ux∥2 ∂ux · ∂vx
∂ux · ∂vx ∥∂vx∥2

)

64

Surface meshing: singularities

Surfaces with isolated irregular points are however very common in CAD systems:
spheres, cones and other surfaces of revolution may contain one or two
irregular/singular points

Mesh generation procedures are known to be prone to failure close to irregularities

Consider a sphere of radius R centered at the origin is parametrized as

x(u, v) = R sin u cos v

y(u, v) = R sin u sin v

z(u, v) = R cos u

where u ∈ [0, π] is the inclination and v ∈ [0, 2π[is the azimuth

65

Surface meshing: singularities

Surfaces with isolated irregular points are however very common in CAD systems:
spheres, cones and other surfaces of revolution may contain one or two
irregular/singular points

Mesh generation procedures are known to be prone to failure close to irregularities

Consider a sphere of radius R centered at the origin is parametrized as

x(u, v) = R sin u cos v

y(u, v) = R sin u sin v

z(u, v) = R cos u

where u ∈ [0, π] is the inclination and v ∈ [0, 2π[is the azimuth

65

Surface meshing: singularities

At the poles, i.e. when u = 0 or u = π,

∂vx = R(− sin u sin v, sin u cos v, 0) = (0, 0, 0)

vanishes and this parametrization is irregular

All the straight-sided 3D triangles above would be invalid (zero-area)

66

Surface meshing: singularities

At the poles, i.e. when u = 0 or u = π,

∂vx = R(− sin u sin v, sin u cos v, 0) = (0, 0, 0)

vanishes and this parametrization is irregular

All the straight-sided 3D triangles above would be invalid (zero-area)

66

Surface meshing
Consider an edge (a, b) with b close to the pole p:

• Plot of iso-values of quality of a triangle (a, b, c) with c positioned anywhere in
the parameter plane

• Shaded zone corresponds to positions of c leading to invalid triangles in 3D
• Observe zones where valid 2D triangles are invalid in 3D, and conversely!

67

Surface meshing in Gmsh
The main issue here is not the fact that the metric tensor is of rank 1 at irregular
points and very distorted around it

x(u, v)

g
d

c

a

b

c

da f

e

f

b

e

b

e

g

The issue is essentially related to triangles (e.g. (b, c, d), valid in 2D but not in
3D) and edges that have one node like b that corresponds to an irregular point of
the parametrization

68

Surface meshing in Gmsh
The main issue here is not the fact that the metric tensor is of rank 1 at irregular
points and very distorted around it

x(u, v)

g
d

c

a

b

c

da f

e

f

b

e

b

e

g

The issue is essentially related to triangles (e.g. (b, c, d), valid in 2D but not in
3D) and edges that have one node like b that corresponds to an irregular point of
the parametrization

68

Surface meshing in Gmsh
Consider a surface of revolution with respect to the z-axis and suppose that the
generating curve is c(v) = (f(v), 0, g(v)) , v ∈ [0, T]
The parametrization of the surface is given by

x(u, v) = (f(v) cos(u), f(v) sin(u), g(v)) , (u, v) ∈ [0, 2π[×[0, T]

One interesting property of surfaces of revolution is that meridian curves u = cst
are geodesics.

b′

meridian

singular point
b

g

c

u

v

69

Surface meshing in Gmsh

Solution: replace all the edges that are incident to irregular points by geodesics

b

a
d f

e
g

c

b f be

d
c

a f

e e
g

be bg bc ba bd

The edge flip algorithm in Gmsh 4 has been updated for this new representation
for both Delaunay-based and local mesh adaptation algorithm (MeshAdapt)

70

Surface meshing in Gmsh

Solution: replace all the edges that are incident to irregular points by geodesics

b

a
d f

e
g

c

b f be

d
c

a f

e e
g

be bg bc ba bd

The edge flip algorithm in Gmsh 4 has been updated for this new representation
for both Delaunay-based and local mesh adaptation algorithm (MeshAdapt)

70

Gmsh’s MeshAdapt algorithm
1. Each edge that is too long is split
2. Each edge that is too short is collapsed
3. Edge flips are performed in order to obtain a better configuration
4. Vertices are re-located optimally after steps 1, 2 and 3

bd

collapse

e

d

collapsesplit split

relocate

c

c c

c

a

a a

a

ba bd ba bc bd

ba be bd ba be

d d

flip

d

e

71

Gmsh’s MeshAdapt algorithm

72

Gmsh’s MeshAdapt algorithm

73

Gmsh’s MeshAdapt algorithm
Gmsh’s surface meshing pipeline defaults to MeshAdapt when other (e.g.
Delaunay-based) algorithms fail

// Script to generate a CAD model with 5000 spherical inclusions in a cube
SetFactory (" OpenCASCADE ");

DefineConstant [
rmin = {0.002 , Name "Min radius "}
rmax = {0.03 , Name "Max radius "}
n = {500 , Name " Number of spheres "}

];

For i In {1:n}
r = rmin + Rand(rmax - rmin);
x = -0.5 + Rand (1);
y = -0.5 + Rand (1);
z = -0.5 + Rand (1);
Sphere (i) = {x, y, z, r };

EndFor
Box(n + 1) = {-0.5, -0.5, -0.5, 1, 1, 1 };
BooleanDifference { Volume {n + 1}; Delete ; }{ Volume {1:n}; Delete ; }

74

Discrete surface meshing

In order to apply the indirect surface meshing approach to discrete surfaces, i.e.
surfaces described by a triangulation T , we need to compute a parametrization of
T

y

R2

u

v

R3

S S’
u(x)

x(u)

z x

75

Computing discrete parametrizations

Assume T is a triangulation of a simply connected surface S

Finding a parametrization of T consists in assigning to every vertex pi(xi, yi, zi)
of the triangulation a pair of parametric coordinates (ui, vi) ∈ S ′

If every triangle (pi, pj, pk), with p• ∈ R3 of the triangulation has a positive area
in the (u; v) plane, then the parametrization is injective

Consider an internal vertex i of T and J(i) the set of indices whose the
corresponding nodes are connected to the node i (in other words, edge (i, j)
exists ∀j ∈ J(i))

76

Computing discrete parametrizations

Assume T is a triangulation of a simply connected surface S

Finding a parametrization of T consists in assigning to every vertex pi(xi, yi, zi)
of the triangulation a pair of parametric coordinates (ui, vi) ∈ S ′

If every triangle (pi, pj, pk), with p• ∈ R3 of the triangulation has a positive area
in the (u; v) plane, then the parametrization is injective

Consider an internal vertex i of T and J(i) the set of indices whose the
corresponding nodes are connected to the node i (in other words, edge (i, j)
exists ∀j ∈ J(i))

76

Computing discrete parametrizations

Assume T is a triangulation of a simply connected surface S

Finding a parametrization of T consists in assigning to every vertex pi(xi, yi, zi)
of the triangulation a pair of parametric coordinates (ui, vi) ∈ S ′

If every triangle (pi, pj, pk), with p• ∈ R3 of the triangulation has a positive area
in the (u; v) plane, then the parametrization is injective

Consider an internal vertex i of T and J(i) the set of indices whose the
corresponding nodes are connected to the node i (in other words, edge (i, j)
exists ∀j ∈ J(i))

76

Computing discrete parametrizations

The value of the parametric coordinates (ui, vi) at vertex i will be computed as a
weighted average of the coordinates (uj, vj) of its neighboring vertices:∑

j∈J(i)
λij(ui − uj) = 0 ,

∑
j∈J(i)

λij(vi − vj) = 0

where λij are coefficients
This scheme is a called a difference scheme that involves only differences
(ui − uj), with j ∈ J(i)

If every λij is positive, values of ui and vi are convex combinations of their
surrounding values
From a geometrical point of view, it actually means that point (ui, vi) lies in the
convex hull Hi of its neighboring vertices: it is easy to prove that the mapping
provided by any such positive scheme is one-to-one

77

Computing discrete parametrizations

The value of the parametric coordinates (ui, vi) at vertex i will be computed as a
weighted average of the coordinates (uj, vj) of its neighboring vertices:∑

j∈J(i)
λij(ui − uj) = 0 ,

∑
j∈J(i)

λij(vi − vj) = 0

where λij are coefficients
This scheme is a called a difference scheme that involves only differences
(ui − uj), with j ∈ J(i)
If every λij is positive, values of ui and vi are convex combinations of their
surrounding values

From a geometrical point of view, it actually means that point (ui, vi) lies in the
convex hull Hi of its neighboring vertices: it is easy to prove that the mapping
provided by any such positive scheme is one-to-one

77

Computing discrete parametrizations

The value of the parametric coordinates (ui, vi) at vertex i will be computed as a
weighted average of the coordinates (uj, vj) of its neighboring vertices:∑

j∈J(i)
λij(ui − uj) = 0 ,

∑
j∈J(i)

λij(vi − vj) = 0

where λij are coefficients
This scheme is a called a difference scheme that involves only differences
(ui − uj), with j ∈ J(i)
If every λij is positive, values of ui and vi are convex combinations of their
surrounding values
From a geometrical point of view, it actually means that point (ui, vi) lies in the
convex hull Hi of its neighboring vertices: it is easy to prove that the mapping
provided by any such positive scheme is one-to-one

77

Discrete parametrizations using FE
One can choose λTutte

ij = 1, but the smoothness of the parametrization is
important for meshing!

Finite elements (Laplace) is smooth but NOT provably positive

λFEM
ij := 1

2

(
cos(θk)
sin(θk) + cos(θl)

sin(θl)

)
.

78

Discrete parametrizations using FE
One can choose λTutte

ij = 1, but the smoothness of the parametrization is
important for meshing!

Finite elements (Laplace) is smooth but NOT provably positive

λFEM
ij := 1

2

(
cos(θk)
sin(θk) + cos(θl)

sin(θl)

)
.

78

Discrete parametrizations using MVC
Mean value coordinates are provably positive:

λMVC
ij =

tan
(

θk

2

)
+ tan

(
θl

2

)
lij

They are not discretizing Laplace operator even at first order on structured
meshes... but who cares, it discretizes a smooth PDE!

79

Beware of indistinguishable coordinates


∆ϵu = 0, ∆ϵv = 0 in T ,
u = uD, v = vD on ∂T1,
∂nu = 0, ∂nv = 0 on ∂T \∂T1

, (2)

80

Discrete surface meshing in Gmsh
Given a conforming “watertight” geometrical triangulation as input, Gmsh’s
discrete surface meshing pipeline consists in 3 steps:

1. Edge detection to define sub-patches if sharp features need to be preserved
(optional)

2. Automatic construction of an atlas of parametrizations, by partitioning the
geometrical triangulation until all computed parametrizations are valid

• Each patch should have zero genus (no “handles”), isomorphic to a disk
(potentially) with holes

• Parametric coordinates should be distinguishable
• Saving the model as a .msh file will contain the discrete curves and surfaces

of the (parametrized) CAD
3. Meshing of all charts of the atlas, possibly in parallel

• All new mesh nodes are guaranteed to be on the input geometrical
triangulation (“no modeling”)

[P. A. Beaufort et al., JCP 2020]

81

Discrete surface meshing in Gmsh
Given a conforming “watertight” geometrical triangulation as input, Gmsh’s
discrete surface meshing pipeline consists in 3 steps:

1. Edge detection to define sub-patches if sharp features need to be preserved
(optional)

2. Automatic construction of an atlas of parametrizations, by partitioning the
geometrical triangulation until all computed parametrizations are valid

• Each patch should have zero genus (no “handles”), isomorphic to a disk
(potentially) with holes

• Parametric coordinates should be distinguishable
• Saving the model as a .msh file will contain the discrete curves and surfaces

of the (parametrized) CAD

3. Meshing of all charts of the atlas, possibly in parallel
• All new mesh nodes are guaranteed to be on the input geometrical

triangulation (“no modeling”)
[P. A. Beaufort et al., JCP 2020]

81

Discrete surface meshing in Gmsh
Given a conforming “watertight” geometrical triangulation as input, Gmsh’s
discrete surface meshing pipeline consists in 3 steps:

1. Edge detection to define sub-patches if sharp features need to be preserved
(optional)

2. Automatic construction of an atlas of parametrizations, by partitioning the
geometrical triangulation until all computed parametrizations are valid

• Each patch should have zero genus (no “handles”), isomorphic to a disk
(potentially) with holes

• Parametric coordinates should be distinguishable
• Saving the model as a .msh file will contain the discrete curves and surfaces

of the (parametrized) CAD
3. Meshing of all charts of the atlas, possibly in parallel

• All new mesh nodes are guaranteed to be on the input geometrical
triangulation (“no modeling”)

[P. A. Beaufort et al., JCP 2020]
81

Discrete surface meshing in Gmsh

Batman STL mesh

82

Discrete surface meshing in Gmsh

Automatic atlas creation: each patch is provably parametrizable by solving a
linear PDE, using mean value coordinates

83

Discrete surface meshing in Gmsh

Remeshing

84

Discrete surface meshing in Gmsh

Automatic atlas creation, this time with feature edge detection

85

Discrete surface meshing in Gmsh

Remeshing with feature edge detection

86

Discrete surface meshing in Gmsh

87

Discrete surface meshing in Gmsh

CT scan of an artery: 101 patches created, most because of the large aspect ratio

88

Discrete surface meshing in Gmsh

Remeshing of a skull: 715 patches created for reparametrization; mesh adapted
to curvature

89

Discrete surface meshing in Gmsh

Remeshing of an X-ray tomography image of a silicon carbide foam by P. Duru,
F. Muller and L. Selle (IMFT, ERC Advanced Grant SCIROCCO): 1,802 patches

created for reparametrization

90

Building the optimal mesh

Optimal mesh
Let us consider a field u(x, y, z) defined in domain Ω and a finite element
approximation uh of u defined on a mesh M

The quality of a finite element solution uh depends strongly on its underlying
mesh: the mesh should be dense where the solution exhibits strong variations and
coarse in places where the discretization error is low

h-adaptivity consists in controlling the mesh size in order to control the
discretization error

The goal:
• Use an error estimation for building a mesh size field
• Develop formulas for describing an optimal mesh

• Minimize the number of elements while controlling the error
• Minimize the error while controlling the number of elements

92

Optimal mesh
Let us consider a field u(x, y, z) defined in domain Ω and a finite element
approximation uh of u defined on a mesh M

The quality of a finite element solution uh depends strongly on its underlying
mesh: the mesh should be dense where the solution exhibits strong variations and
coarse in places where the discretization error is low

h-adaptivity consists in controlling the mesh size in order to control the
discretization error

The goal:
• Use an error estimation for building a mesh size field
• Develop formulas for describing an optimal mesh

• Minimize the number of elements while controlling the error
• Minimize the error while controlling the number of elements

92

Optimal mesh
Let us consider a field u(x, y, z) defined in domain Ω and a finite element
approximation uh of u defined on a mesh M

The quality of a finite element solution uh depends strongly on its underlying
mesh: the mesh should be dense where the solution exhibits strong variations and
coarse in places where the discretization error is low

h-adaptivity consists in controlling the mesh size in order to control the
discretization error

The goal:
• Use an error estimation for building a mesh size field
• Develop formulas for describing an optimal mesh

• Minimize the number of elements while controlling the error
• Minimize the error while controlling the number of elements

92

Optimal mesh
Let us define the elementary discretization error as some norm ∥.∥ of the
difference between the finite element solution uh and the exact solution u

e2
i =

∫
Ωi

∥u − uh∥2 dv

A posteriori error estimation techniques aim at producing estimates of ei

The local error converges to zero at a certain convergence rate k

ei = Chk
i

where C depends on u but is independent of hi, the mesh size. The size hi of a
triangle or of a tetrahedron Ωi is usually chosen as its circumradius or its
min/max/avg edge length
Let us call M∗ the optimal mesh and h∗

i the optimal mesh size in the area
defined by element Ωi in the original mesh, M

93

Optimal mesh
Let us define the elementary discretization error as some norm ∥.∥ of the
difference between the finite element solution uh and the exact solution u

e2
i =

∫
Ωi

∥u − uh∥2 dv

A posteriori error estimation techniques aim at producing estimates of ei

The local error converges to zero at a certain convergence rate k

ei = Chk
i

where C depends on u but is independent of hi, the mesh size. The size hi of a
triangle or of a tetrahedron Ωi is usually chosen as its circumradius or its
min/max/avg edge length
Let us call M∗ the optimal mesh and h∗

i the optimal mesh size in the area
defined by element Ωi in the original mesh, M

93

Optimal mesh

The total error contained in the optimal mesh over the area defined by Ωi is

e∗
i

2 = e2
i

(
h∗

i

hi

)2k

The total error contained in the optimal mesh is therefore

e∗2 =
N∑

i=1
e∗2

i =
∑

i

e2
i

(
h∗

i

hi

)2k

=
∑

i

e2
i r

−2k
i

where ri is the size reduction factor of element Ωi

94

Optimal mesh

The total error contained in the optimal mesh over the area defined by Ωi is

e∗
i

2 = e2
i

(
h∗

i

hi

)2k

The total error contained in the optimal mesh is therefore

e∗2 =
N∑

i=1
e∗2

i =
∑

i

e2
i

(
h∗

i

hi

)2k

=
∑

i

e2
i r

−2k
i

where ri is the size reduction factor of element Ωi

94

Optimal mesh

The total number of elements in the optimal mesh can be written as

N∗ =
N∑

i=1

(
hi

h∗
i

)d

=
N∑

i=1
rd

i

where d is the dimension of the problem

An optimal mesh could then be defined as a mesh that results in a specified
discretization error e∗ = ē while minimizing the number of elements N∗

95

Optimal mesh

The total number of elements in the optimal mesh can be written as

N∗ =
N∑

i=1

(
hi

h∗
i

)d

=
N∑

i=1
rd

i

where d is the dimension of the problem

An optimal mesh could then be defined as a mesh that results in a specified
discretization error e∗ = ē while minimizing the number of elements N∗

95

Optimal mesh
Consider function

J(r1, . . . , rN , λ) =
N∑

i=1
rd

i + λ

(
N∑

i=1
e2

i r
−2k
i − ē2

)

for which we search for a stationary point. In order to simplify the computations,
pose ti = rd

i , which gives

J(t1, . . . , tN , λ) =
N∑

i=1
ti + λ

(
N∑

i=1
e2

i t
−2k/d
i − ē2

)
(3)

We first set
∂J

∂ti

= 0

that leads to
ti = (λe2

i α)
1

1+α

with α = 2k/d
96

Optimal mesh
Then,

ri = (λe2
i α)

1
d(1+α)

Inserting that result in (3) gives

J(λ) =
(

N∑
i=1

e
2

1+α

i

)(
α

1
1+α + α

−α
1+α

)
λ

1
1+α − λē2

We have then

∂J

∂λ
= 0 =

(
N∑

i=1
e

2
1+α

i

)(
α

1
1+α + α

−α
1+α

) 1
1 + α

λ
−α

1+α − ē2

which leads to
λ

−α
1+α = (1 + α)ē2(∑N

i=1 e
2

1+α

i

) (
α

1
1+α + α

−α
1+α

)
97

Optimal mesh
Then

ri =

e
2α

(1+α)
i

(∑N
j=1 e

2
1+α

j

)
ē2


1

dα

= Ke
2

2k+d

i (4)

with K independent of i. The error in one element of the optimal mesh is

e∗2
i

rd
i

= e2
i r

−2k−d
i = e2

i r
2(−2k−d)/(2k+d)
i K−2k−d = K−2k−d

The mesh optimization process aims therefore at building a mesh with errors that
are uniformly distributed

Drawbacks of this (natural) definition of the optimal mesh:
• Difficulty to predict accurately ei

• It is hard to control N∗

98

Optimal mesh
Then

ri =

e
2α

(1+α)
i

(∑N
j=1 e

2
1+α

j

)
ē2


1

dα

= Ke
2

2k+d

i (4)

with K independent of i. The error in one element of the optimal mesh is

e∗2
i

rd
i

= e2
i r

−2k−d
i = e2

i r
2(−2k−d)/(2k+d)
i K−2k−d = K−2k−d

The mesh optimization process aims therefore at building a mesh with errors that
are uniformly distributed

Drawbacks of this (natural) definition of the optimal mesh:
• Difficulty to predict accurately ei

• It is hard to control N∗

98

Optimal mesh

Consider the alternative formula:

J(r1, . . . , rN , λ) =
N∑

i=1
e2

i r
−2k
i + λ

(
N∑

i=1
rd

i − N̄

)

for which we search for a stationary point. In order to simplify the computations,
pose again ti = rd

i , which gives

J(t1, . . . , tN , λ) =
N∑

i=1
e2

i t
−2k/d
i + λ

(
N∑

i=1
ti − N̄

)
(5)

99

Optimal mesh
We first set

∂J

∂ti

= 0

that leads to
ti =

(
αe2

i λ
−1
) 1

α+1

with α = 2k/d. Then,
ri = (λ−1e2

i α)
1

d(1+α)

Inserting that result in (5) gives

J(λ) =
(

N∑
i=1

e
2

1+α

i

)(
α

1
1+α + α

−α
1+α

)
λ

α
1+α − λN̄

We have then

∂J

∂λ
= 0 =

(
N∑

i=1
e

2
1+α

i

)(
α

1
1+α + α

−α
1+α

) α

1 + α
λ

−1
1+α − N̄

100

Optimal mesh

This leads to
λ

−1
1+α = (1 + α)N̄(∑N

i=1 e
2

1+α

i

) (
α

2+α
1+α + α

1
1+α

)
and then

ri = e
2

d(1+α)
i α

1
d(1+α)

 (1 + α)N̄(∑N
i=1 e

2
1+α

i

) (
α

2+α
1+α + α

1
1+α

)


1
d

(6)

Let’s give it a try: python3 examples/api/adapt mesh.py

101

Optimal mesh

This leads to
λ

−1
1+α = (1 + α)N̄(∑N

i=1 e
2

1+α

i

) (
α

2+α
1+α + α

1
1+α

)
and then

ri = e
2

d(1+α)
i α

1
d(1+α)

 (1 + α)N̄(∑N
i=1 e

2
1+α

i

) (
α

2+α
1+α + α

1
1+α

)


1
d

(6)

Let’s give it a try: python3 examples/api/adapt mesh.py

101

Optimal mesh
p

(a) Von-Mises stresses, loads (b) Mesh (3, 301 triangles)
and fixations deformed structure

(c) Mesh using of formula (4) (d) Mesh using of formula (6)
N̄ = 3, 301, 3, 230 triangles ē2 = 5.66 107, 1, 090 triangles

102

Optimal mesh

Adapted mesh in 3D (253,118 tetrahedra)
103

Curvilinear meshes

These techniques generalize to finite element formulations using polynomial order
p greater than one as well

However, there are several direct and indirect effects on the adaptation process
when applied to higher-order finite elements:

• One direct effect is that k in our formulas is usually larger
• For problems in which the solution is C∞, k = p + 1 − s where s is the

order of the derivative used when measuring the error

ei = Chk
i

Increasing p directly increases k

• For a fixed ē, this may result in optimal meshes that are so coarse that the
geometrical error may dominate the discretization errors

104

Curvilinear meshes
Isoparametric simulations: the curved geometry and the finite element solution
are represented using the same polynomial order

p = 1 p = 3 p = 5

105

Curvilinear meshes

p = 5, straight sided p = 5, isoparametric

The use of curved elements is essential: when the geometry is interpolated with
less accuracy than the finite element fields, ill-resolved parts of geometry may
appear to the high order approximation as sharp corners, introducing spurious
stress concentrations

Here, the high order approximation gives an accurate solution on a wrong
geometry

106

Curvilinear meshes
Generating a high order mesh can not be performed reliably by simply curving the
faces and edges on the geometry: snapping high-order mesh vertices onto the
geometry may cause elements to become tangled and finite element mappings
may become singular

Valid high order meshes have to be curved even inside the domain:

Naive (one tangled element) Curved internal edges
107

Curvilinear meshes

• Gmsh implements a high-order optimization pipeline that combines global
and local optimization strategies [Toulorge, T., Geuzaine, C., Remacle, J. F., &
Lambrechts, J. (2013). Robust untangling of curvilinear meshes. Journal of
Computational Physics, 254, 8-26]

• A lot remains to be done to generate coarse high-order meshes reliably and
efficiently!

• Make sure to attend Tim Gabriel’s talk this afternoon for a new take on
the issue

108

Curvilinear meshes

• Gmsh implements a high-order optimization pipeline that combines global
and local optimization strategies [Toulorge, T., Geuzaine, C., Remacle, J. F., &
Lambrechts, J. (2013). Robust untangling of curvilinear meshes. Journal of
Computational Physics, 254, 8-26]

• A lot remains to be done to generate coarse high-order meshes reliably and
efficiently!

• Make sure to attend Tim Gabriel’s talk this afternoon for a new take on
the issue

108

Unstructured quad meshing

Split Triangles – Full Quad

One triangle is divided in three quads, 20 lines of code, problem solved?

110

Matching
A quad q and its the four internal angles αk, k = 1, 2, 3, 4. We define the
quality Q(q) of q as:

Q(q) = max
(

1 − 2
π

max
k

(∣∣∣∣π2 − αk

∣∣∣∣), 0
)

. (7)

Greedy quad-dominant algorithm [Frey & Borouchaki, Adaptive
triangular-quadrilateral mesh generation, IJNME, 1998]

Rectangular domain of size 1 × 3 and a mesh size field defined by

h(x, y) = 0.1 + 0.08 sin(3x) cos(6y)

111

Full Quad
2h(x, y) – Match – Split.

112

Perfect Matching

eij

ti

tj

A mesh (in black) and its graph (in cyan and red). The set of graph edges
colored in red forms a perfect matching

113

Perfect Matching

In 1965, Edmonds [Edmonds, Jack. Paths, trees, and flowers. Can. J. Math., 1965]
invented the Blossom algorithm that solves the problem of optimum perfect
matching in polynomial time. A straightforward implementation of Edmonds’
algorithm requires O(#V 2#E) operations

Since then, the worst-case complexity of the Blossom algorithm has been steadily
improving. The current best known result is

O(#V (#E + log #V))

Gmsh uses the Blossom IV code of Cook and Rohe1, which has been considered
for several years as the fastest available

1Computer code available at http://www2.isye.gatech.edu/˜wcook/blossom4/
114

http://www2.isye.gatech.edu/~wcook/blossom4/

Perfect Matching

Try it in Gmsh (see e.g. tutorial 11)...

115

Existence of Perfect Matchings
nt = 2(nv − 1) − nh.

An even number of triangles requires an even number of points on the boundary

Even if nt is even, there is in general no guarantee that even one single perfect
matching exists in a given graph

Tutte’s theorem : A graph G = (V, E) has no perfect matching if and only if
there is a set S ⊆ V whose removal results in more odd-sized components than
the cardinality nS of S, i.e., the number of elements in S [Pemmaraju S. and
Skiena S, Computational Discrete Mathematics’, 2003]

116

Planar Graphs

2D meshes are planar graphs. Gmsh only generates meshes in the parameter
plane

There exists an efficient algorithm (i.e., in polynomial time) that counts perfect
matchings in a planar graph

Cubic graphs, also called trivalent graphs, are graphs for which every node has
exactly 3 adjacent nodes. Every cubic graph has at least one perfect matching
(Oum S., Perfect Matchings in Claw-free Cubic Graphs). It can be proven that
the number of perfect matchings in a cubic graph grows exponentially with #V

On closed surfaces, every triangular mesh has a perfect matching!

117

Extra Edges

Initial Raw Blossom Vertex Topological Final
triangulation application smoothing optimization mesh

118

Great Barrier Reef

119

Gmsh’s second attempt: delquad
Remacle, J. F., Henrotte, F., Carrier-Baudouin, T., Béchet, E., Marchandise, E.,
Geuzaine, C., & Mouton, T. (2013). A frontal Delaunay quad mesh generator using the
L∞ norm. International Journal for Numerical Methods in Engineering, 94(5), 494-512

x1

a

xx2

y4

a

y1 y2

y y3

Left : The Voronoi cell of each vertex x is an hexagon of area a2√3/2

Filling R2 with equilateral triangles requires thus 2/
√

3 times more vertices (i.e.
about 15% more) than filling the same space with right triangles

120

Gmsh’s second attempt: delquad

Gmsh’s surface mesher is a delaunay-frontal algorithm. Largely inspired by [S.
Rebay Efficient unstructured mesh generation by means of Delaunay triangulation and
Bowyer-Watson algorithm. Journal of computational physics, 106(1), 125-138, 1993]

Combine the robustness of Bowyer-Watson and triangle quality control of frontal
algorithms

Extension to surface meshing and the devil is in the details. One of Gmsh’s
oldest algorithms

An example speaks louder than a long speech

121

Gmsh’s second attempt: delquad

Gmsh’s frontal Delaunay algorithm tries its best to make equilateral triangles

A front edge e separates triangles that are “done” and other ones that are “not
done”

A new point is added on the orthogonal bissector of e to eventually create an
equilateral triangle

It is possible to very slightly modify the frontal algorithm to create right triangles

122

Triangulation in the L∞-norm
The L∞-norm distance

∥x2 − x1∥∞ = lim
p→∞

∥x2 − x1∥p = max (|x2 − x1|, |y2 − y1|)

Unit circles

L1

y

x

L∞

L2

The 2-norm is the only norm that is rotationally invariant

We thus use a cross field to define a local frame at point x
123

Triangulation in the L∞-norm

In the L∞ norm, the following mesh is made of equilateral triangles only.

y4

a

y1 y2

y y3

It is possible to use the same frontal-delaunay algorithm by computing orthogonal
bisectors in the L∞-norm

124

Bisectors in the L∞-norm
The perpendicular bisector, or bisector of the segment delimited by the points
x1 = (−xp, −yp) and x2 = (xp, yp) is by definition the set of points x = (x, y)
equidistant to x1 and x2

It is the union of the intersections of circles centered at x1 and x2 and having the
same radius

125

Bisectors in the L∞-norm

126

Circumcenter in the L∞-norm

127

Circumcenters in the L∞-norm

A right triangle. Perpendicular bisectors of the three segments are coloured in
yellow (edge x1x3), blue (edge x2x3) and cyan (edge x1x2)

Points x1
c , x2

c and x3
c are three circumvents that correspond to the three

circumsquares C1, C2 and C3

Circumcenter and circumsquare are unique when the points are in general position
128

Delquad
• The new point should not be placed beyond the center xc of the circumsquare of the

active triangle (red triangle), as this would create a triangle with a small edge xnx4

• The new point should not be placed below the intersection xl of the bisector L and the
circumsquare Cl of the resolved triangle (x1, x2, x3). Inserting a point inside Cl would
make the resolved triangle invalid by means of the Delaunay criterion

• If δ′(xm) = ∥x3 − x2∥∞, then the optimal point is xn = xe. It corresponds to the largest
triangle Ti(xe, x2, x3) that verifies R∞(Ti, θ) = δ′(xm)

129

Delquad

130

Delquad
We use standard Bowyer-Watson to connect the points i.e. we do Delaunay in
the 2-norm

Yet, it has been observed experimentally that, in the case of finite element meshes
with decent point distribution properties, the Delaunay kernel in the standard
L2-norm and the Delaunay kernel in the L∞-norm give similar triangulations

131

Delquad

132

Delquad

133

Delquad

134

Gmsh’s third (& final) attempt: pack
Baudouin, T. C., Remacle, J. F., Marchandise, E., Henrotte, F., & Geuzaine, C.
(2014). A frontal approach to hex-dominant mesh generation. Advanced Modeling and
Simulation in Engineering Sciences, 1, 1-30

135

Gmsh’s third (& final) attempt: pack

pi

pi j

ni di j

Ci

136

Gmsh’s third (& final) attempt: pack

137

Gmsh’s third (& final) attempt: pack

138

Gmsh’s third (& final) attempt: pack

139

Gmsh’s third (& final) attempt: pack

140

Improving pack: quadqs
[M. Reberol et al. 2021]

Compute a (scaled) cross-field with multilevel diffusion

141

Improving pack: quadqs

Build a unstructured quadrilateral mesh with a frontal approach guided by the
scaled cross field

142

Improving pack: quadqs

Pattern-based quadrilateral meshing and cavity remeshing to eliminate
unnecessary irregular vertices while preserving the cross field singularities

143

Improving pack: quadqs

144

Improving pack: quadqs

145

Improving pack: quadqs

The final quad mesh is very similar to the one obtained with the global
parametrization approach and has the same number of irregular vertices

146

Improving pack: quadqs

• “Block” model: 533 surfaces,
1584 curves, 261.5k vertices,
261.6k quads

• Average SICN quality: 0.87
(minimum: 0.11)

• 58 sec. (initial unstructured
quad mesh) + 33 sec.
(quasi-structured improvement)
on Intel Core i7 4 cores

• Quasi-structured improvement
reduces the number of irregular
from 14.4k to 3.6k

147

Ongoing: Pragmatic quad mesher

• Boundary curves are discretized first, surfaces are then meshed using the 1D
discretization of the curves.

• For a surface to be meshed exclusively with quadrilaterals, the total number
of subdivisions assigned to the curves bounding that surface must be even.

• While enforcing an even number of segments on every individual curve is a
sufficient condition, it typically induces substantial changes to the 1D mesh.

• Idea – change the 1D mesh as few as possible

148

Ongoing: Pragmatic quad mesher
• Each face Fj is bounded by a set of curves Jj ⊂ {1, . . . , E}. We call si the

final number of subdivisions that fulfills the following parity conditions:

∀j,
∑
i∈Jj

si ≡ 0 (mod 2).

• We thus minimize the following weighted-cost function:

min
n∈Zm

≥0

m∑
i=1

wi 1{si ̸=Si} subject to parity constraints.

Here, 1{si ̸=Si} is an indicator function:

1{si ̸=Si} =

1 if si ̸= Si,

0 if si = Si.

• We define a weight wi > 0 typically chosen so that wi = 1
Si

.
149

Ongoing: Pragmatic quad mesher
• Let us first define the face–curve incidence matrix

A ∈ {0, 1}F ×E.

The entry Aji is defined as

Aij =

1 if curve Ej lies on the boundary of face Fi,
0 otherwise.

• A sum of integers is even if and only if the number of odd terms in the sum
is even, we define a set of unknowns πi = si (mod 2): πi = 1 if si is odd
and πi = 0 if si is even.

• Parity conditions
Aπ ≡ 0 (mod 2).

150

Ongoing: Pragmatic quad mesher
Initial solution:

π0
1 = 0

π0
2 = 0

π0
3 = 1

π0
4 = 1

π0
5 = 0

π0
6 = 0

π0
7 = 1

π0
8 = 0

π0
9 = 1

π0
10 = 0

π0
11 = 1

π0
12 = 0

• A cube :

A =



1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1 0 1


.

151

Ongoing: Pragmatic quad mesher

• We perform Gaussian elimination on A over the finite field F2 to get

A ∼



1 0 0 0 0 1 1 1 1 1 0 0
0 1 0 0 0 1 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1 0 1 0 1
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


.

• Row 6 is null – for every closed volume, one equation is redundant.
• Initial parities given by Gmsh are π0 = (0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0).
• Heuristic – unknowns are sorted – S1 > S2
• We can use the ”initial” solution to fix (π6, . . . , π12).

152

Ongoing: Pragmatic quad mesher

We start with π = (π1, π2, π3, π4, π5, 0, 1, 0, 1, 0, 1, 0).

π1 = π6︸︷︷︸
0

+ π7︸︷︷︸
1

+ π8︸︷︷︸
0

+ π9︸︷︷︸
1

+ π10︸︷︷︸
0

(mod 2) → π1 = 0

π2 = π6︸︷︷︸
0

+ π9︸︷︷︸
1

+ π11︸︷︷︸
1

(mod 2) → π2 = 0

π3 = π7︸︷︷︸
1

+ π11︸︷︷︸
1

+ π12︸︷︷︸
0

(mod 2) → π3 = 0

. . .

π = (0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0).

153

Ongoing: Pragmatic quad mesher

Initial Solution

8

8

7

7

6

6

5

4

3

2

1

2

8

8

6

6

5

6

5

4

3

2

1

2

154

Ongoing: Pragmatic quad mesher
Improved solution π(i) = π + ∑7

ℓ=1 αℓ v(ℓ),

• π is the initial solution and the v(ℓ) form a basis of the null space of A and
αl ∈ {0, 1}.

A ∼



1 0 0 0 0 1 1 1 1 1 0 0
0 1 0 0 0 1 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1 0 1 0 1
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


.

• Do not look for all v(ℓ), choose a small subset. Here just choose i = 6 and
start with v(1) = (v(1)

2 , v
(1)
2 , v

(1)
3 , v

(1)
4 , v

(1)
5 , 1, 0, 0, 0, 0, 0, 0). and thus

v(1) = (1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0)

155

Ongoing: Pragmatic quad mesher
Patterns:

• CAD models are made of many patches, lots of them of simple topology.
• In Gmsh, we only encoded a few of those, more will come.

156

Ongoing: Pragmatic quad mesher
• Look for faces with {0, . . . , 5} convex corners, no holes, no concave corners.
• Apply pattern if all chords are positive
• Smooth using enhanced winslow (now works on surfaces, could be taylored

for very anisotropic meshes)
• If mesh is bad, restore the unstructured one.

157

Ongoing: Pragmatic quad mesher

158

Ongoing: Pragmatic quad mesher

159

Ongoing: Pragmatic quad mesher

160

Unstructured hex meshing

Frontal approach

• Create a 3D frame/size field
• Generate points on surfaces & on volumes using the same approach
• Tetrahedralize the points (+ recover features)
• Subdivide tetrahedra into hexahedra
• Create a all-hex mesh?

gmsh Kolben.stp -clmin .3 -clmax .3 -hybrid -3 -nt 8

162

Subdividing a hexahedron into tetrahedra
Bounds on the number of tetrahedra:

nv − ne + nf − nt = 1

We have nv = 8,

ne = nie + nbe with nbe = 12 + 6 = 18

nf = nif + nbf with nbf = 2 = 12
4nt = 2nif + nbf → nif = 2nt − 6

All together (H. Edelsbrunner et al, Tetrahedrizing point sets in three dimensions,
Journal of Symbolic Computation 10 (1990) 335–347)

8 − nie − 18 + (2nt − 6) + 12 − nt = 1 → nt = nie + 5

Since there are at most nie =
(

8
2

)
− nbe = 10 interior edges, we have the bounds

5 ≤ nt ≤ 15
163

174 Subdivisions
Pellerin, J., Verhetsel, K., & Remacle, J. F. (2018). There are 174 Subdivisions of the
Hexahedron into Tetrahedra. ACM Transactions on Graphics (TOG), 37(6), 1-9

A triangulation of the 2-sphere can be constructed from the triangulation of a
2-ball by building a cone

The inverse transformation, the removal of one point v of the sphere triangulation
as well as all triangles incident to v, permits to obtain the triangulation of a ball
The 3-sphere is defined as the 3-dimensional boundary of a 4-dimensional ball
There are 1296 triangulations of the 3-sphere with 9 points [Altshuler et al, The
classification of simplicial 3-spheres with nine vertices into polytopes and
nonpolytopes. Discrete Mathematics 31, 2 (1980), 115–124)]

164

Dual complex

165

174 Subdivisions
Nine triangulations of the 3-ball with eight vertices can be built from each of the
1296 triangulations byremoving one of thevertices vi, i = 1, . . . , 9 and its link, i.e.
all tetrahedra incident to vi

The triangulation of the boundary of a hexahedron has 8 vertices and 18 edges.
Among these, 12 are fixed and there are 2 possibilities to place the remaining 6
diagonals of the quadrilateral facets. We have then 26 = 64 possible
triangulations. These triangulations can be classified into 7 equivalence classes,
i.e. there are 7 triangulations of the hexahedron boundary up to isomorphism

166

174 Subdivisions
The hexahedron has 174 combinatorial triangulations up to isomorphism that do
not contain any boundary tetrahedra
Among those 174 combinatorial triangulations, the 171 triangulations that admit
an oriented matroid have a realization. The other ones cannot be realized

167

174 Subdivisions

168

Combining

Pellerin, J., Johnen, A., & Remacle, J. F. (2017). Identifying combinations of
tetrahedra into hexahedra: a vertex based strategy. Procedia engineering, 203, 2-13

1. A set of mesh vertices V is initially sampled in the domain
2. A tetrahedral mesh T is built by connecting V , e.g. using a Delaunay kernel

like
3. A set H of potential hexahedra that can be constructed by combining some

tetrahedra of T is created
4. A maximal subset Hc ⊂ H of compatible hexahedra is determined It has

been shown that this stage can be formally written as a maximal clique
problem

5. The tetrahedra, T ′, that are not combined into hexahedra are combined into
prisms, pyramids, or remain unchanged in the final hex-dominant mesh

169

Combining

170

Combining
Eight vertices of the tetrahedral mesh T define a potential hexahedron if (1) the
twelve hexahedron edges are edges of T and if (2) the six quadrilateral
hexahedron faces can be formed by merging two triangular facets of T

This starting point is quite general and allows to automatically detect potential
hexahedra without having to define a priori decomposition patterns into
tetrahedra

171

Maximal independent set

In graph theory, an independent set is a set of vertices in a graph, no two of
which are adjacent
Create a graph – nodes at the potential hexes and an edge exist between two
hexes if they share a tet
The optimization problem of finding a maximum independent set is a strongly
NP-hard problem (in 2D, Blossom is polynomial!)
Greedy algorithm: choose the best hex h, remove all hexes that are connected to
h i.e. that share a tet with h, choose the best remaining hex and so on

172

Hex-dominant

gmsh Los1.stp -clmin 1.5 -clmax 1.5 -hybrid -3 -nt 8

173

Full Hex?

174

Full Hex?
Verhetsel, K., Pellerin, J., & Remacle, J. F. (2019). A 44-element mesh of Schneiders’
pyramid Bounding the difficulty of hex-meshing problems. Computer Aided Design

175

Full Hex?
Erickson J. (2014). Efficiently hex-meshing things with topology. Discrete &
Computational Geometry 52, 3 (2014), 427–449

Verhetsel, K., Pellerin, J., & Remacle, J. F. (2019). Finding hexahedrizations for small
quadrangulations of the sphere. ACM Transactions on Graphics (TOG), 38(4), 1-13

Any ball-shaped domain bounded by n quadrangles can be meshed with no more
than 78n hexahedra. This paper gives bounds that are very significantly lowers
the previous upper bound of 5396n

176

Conclusions and perspectives

Conclusions and perspectives

• Overview of meshing with Gmsh:
• Unstructured triangulations
• Surface meshing, parametrizations, high-order meshes
• Optimal meshes
• Unstructured quad and hex meshing

• Exciting perspectives:
• Improved high-order meshing
• 3D boundary layers

• First Gmsh User Meeting: 8-9 July 2026 in Liège!

178

Conclusions and perspectives

• Overview of meshing with Gmsh:
• Unstructured triangulations
• Surface meshing, parametrizations, high-order meshes
• Optimal meshes
• Unstructured quad and hex meshing

• Exciting perspectives:
• Improved high-order meshing
• 3D boundary layers

• First Gmsh User Meeting: 8-9 July 2026 in Liège!

178

Conclusions and perspectives

• Overview of meshing with Gmsh:
• Unstructured triangulations
• Surface meshing, parametrizations, high-order meshes
• Optimal meshes
• Unstructured quad and hex meshing

• Exciting perspectives:
• Improved high-order meshing
• 3D boundary layers

• First Gmsh User Meeting: 8-9 July 2026 in Liège!

178

PS: GmshFEM and GmshDDM
C++ finite element and domain decomposition libraries based on the Gmsh API
[A. Royer et al. 2022]

• Symbolic symbolic high-level description of weak formulations
• General coupled formulations in 1D, 2D, 2D-axi and 3D

• Arbitrarily high-order Lagrange and hierarchical basis functions
• Scalar and vector fields (L2, H1, H(curl)) on hybrid, curved meshes
• Real and complex arithmetic, single or double precision
• Parallelization and linear algebra backends:

• GmshFEM multi-threaded using OpenMP, linear algebra using Eigen
and PETSc, eigensolver using SLEPc

• GmshDDM: distributed memory parallelization using MPI, iterative
Krylov solver using PETSc (incl. HPDDM)

179

PS: GmshFEM and GmshDDM
C++ finite element and domain decomposition libraries based on the Gmsh API
[A. Royer et al. 2022]

• Symbolic symbolic high-level description of weak formulations
• General coupled formulations in 1D, 2D, 2D-axi and 3D
• Arbitrarily high-order Lagrange and hierarchical basis functions
• Scalar and vector fields (L2, H1, H(curl)) on hybrid, curved meshes
• Real and complex arithmetic, single or double precision

• Parallelization and linear algebra backends:

• GmshFEM multi-threaded using OpenMP, linear algebra using Eigen
and PETSc, eigensolver using SLEPc

• GmshDDM: distributed memory parallelization using MPI, iterative
Krylov solver using PETSc (incl. HPDDM)

179

PS: GmshFEM and GmshDDM
C++ finite element and domain decomposition libraries based on the Gmsh API
[A. Royer et al. 2022]

• Symbolic symbolic high-level description of weak formulations
• General coupled formulations in 1D, 2D, 2D-axi and 3D
• Arbitrarily high-order Lagrange and hierarchical basis functions
• Scalar and vector fields (L2, H1, H(curl)) on hybrid, curved meshes
• Real and complex arithmetic, single or double precision
• Parallelization and linear algebra backends:

• GmshFEM multi-threaded using OpenMP, linear algebra using Eigen
and PETSc, eigensolver using SLEPc

• GmshDDM: distributed memory parallelization using MPI, iterative
Krylov solver using PETSc (incl. HPDDM)

179

PS: GmshFEM and GmshDDM
// Domains
Domain omega("omega"), gammaScat ("scat"), gammaExt ("ext");

// Finite element field
Field <Scalar , form :: Form0 > u("u", omega ,

functionSpaceH1 :: HierarchicalH1 ,
6); // polynomial degree 6

// Dirichlet constraint
complex <double > im = complex <double >(0. , 1.);
double k = 50;
Function <complex <double >, Degree :: Degree0 > uInc =

exp <complex <double >>(im * k * z<complex <double > >());
u. addConstraint (gammaScat , -uInc);

// Weak formulation
Formulation <Scalar > f(" helmholtz ");
const string g = " Gauss12 ";

f. integral (grad(dof(u)), grad(tf(u)), omega , g);
f. integral (- k * k * dof(u) , tf(u) , omega , g);
f. integral (- im * k * dof(u) , tf(u) , gammaExt , g);

180

PS: GmshFEM and GmshDDM

Acoustic noise from a turbofan engine intake (1 billion dofs, 1024 partitions)
[P. Marchner et al. 2025]

181

PS: GmshDDM & GmshDG on GPU
• GmshDDM is being ported to GPU to speed up the iterative process

• We have also added multi-GPU support to our time-domain Discontinuous
Garlerkin code GmshDG for Maxwell:

182

PS: GmshDDM & GmshDG on GPU
• GmshDDM is being ported to GPU to speed up the iterative process
• We have also added multi-GPU support to our time-domain Discontinuous

Garlerkin code GmshDG for Maxwell:

182

PS: GmshDDM & GmshDG on GPU

183

	General overview of Gmsh
	First model and mesh
	Ingredients for unstructured triangulations
	Surface meshing
	Building the optimal mesh
	Unstructured quad and hex meshing

	fd@rm@0:

