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e | am a professor at the University of Liége in Belgium, where | lead a team
of about 15 people in the Montefiore Institute (EECS Dept.), at the
intersection of applied math, scientific computing and engineering physics

e My research interests include modeling, analysis, algorithm development, and
simulation for problems arising in various areas of engineering and science

e Current applications: low- and high-frequency electromagnetics, geophysics,
biomedical problems
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Some background

| am a professor at the University of Liege in Belgium, where | lead a team
of about 15 people in the Montefiore Institute (EECS Dept.), at the
intersection of applied math, scientific computing and engineering physics
My research interests include modeling, analysis, algorithm development, and
simulation for problems arising in various areas of engineering and science
Current applications: low- and high-frequency electromagnetics, geophysics,
biomedical problems

We write quite a lot of codes, some released as open source software:
https://gmsh.info, https://getdp.info, https://onelab.info
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Some background

e | am a professor at the Université catholique de Louvain in Belgium, where |
lead a team of a dozen researchers in the Institute of Mechanics, Materials
and Civil Engineering

e My main research topics are mesh generation and computational mechanics

e | have been co-operating with Christophe for more than 20 years, a fruitful
collaboration that has led to the creation of Gmsh
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General overview of Gmsh

First model and mesh

Ingredients for unstructured triangulations
Surface meshing

Building the optimal mesh

Unstructured quad and hex meshing



General overview of Gmsh
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G et What is Gmsh?

e Gmsh (https://gmsh.info) is an open source 3D finite element mesh
generator with a built-in CAD engine and post-processor p—

e Includes a graphical user interface (GUI) and can drive any simulation code
through ONELAB
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What is Gmsh?

e Gmsh (https://gmsh.info) is an open source 3D finite element mesh

generator with a built-in CAD engine and post-processor

Gmsh

e Includes a graphical user interface (GUI) and can drive any simulation code
through ONELAB

e Today, Gmsh represents about 400k lines of C++ code

still same 2 core developers; about 100 with > 1 commit

about 3,500 registered users on the development site
https://gitlab.onelab.info

about 20,000 downloads per month (70% Windows)

about 1,000 citations per year — the Gmsh paper is cited about 10,000 times
Gmsh has become one of the most popular open source finite element mesh
generators worldwide


https://gmsh.info
https://gitlab.onelab.info

14/05/2025

years of Gmsh development in 1 minute

A warm thank you to all the contributors!
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A little bit of history

e Gmsh was started in 1996, as a side project

e 1998:
e 2003:
e 2006:
e 2009:
o 2012:
e 2013:
e 2015:
e 2017:
e 2018:
e 2010:
e 2021:
o 2023:

First public release

Open Sourced under GNU GPL

OpenCASCADE integration (Gmsh 2)

[JNME paper and switch to CMake

Curvilinear meshing and quad meshing

Homology and ONELAB solver interface
Multi-Threaded 1D and 2D meshing (coarse-grained)
Boolean operations and switch to Git (Gmsh 3)
C++, C, Python and Julia APl (Gmsh 4)
Multi-Threaded 3D meshing (fine-grained), STL remeshing
GmshFEM, Quasi-structured quad meshing
GmshDDM, Fortran AP

B UCLouvain
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Strategic choices

e Design goals: fast, light and user-friendly

Written in simple C++

GUIs: FLTK (desktop), UIKit (iOS), Android

OpenGL graphics

Highly portable (OSes & compilers)

Easy to distribute & install: zero dependencies on installation
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Strategic choices

e Design goals: fast, light and user-friendly

Written in simple C++

GUIs: FLTK (desktop), UIKit (iOS), Android

OpenGL graphics

Highly portable (OSes & compilers)

Easy to distribute & install: zero dependencies on installation

e Handling of numerous third party libraries

e Build system based on CMake — everything is optional
e Some libs integrated and redistributed directly in gmsh/contrib (HXT,
BAMG, Concorde, ...)

e Funding
e Hobby until 2006, then industry, Wallonia, Belgium & EU
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Strategic choices

e Community infrastructure
e Our own (using GitLab) to enable public/private parts
(https://gitlab.onelab.info/gmsh/gmsh)
o Continuous integration and delivery (Cl/CD) of Gmsh app and Gmsh SDK
on Windows, Linux and macOS
e Web site (https://gmsh.info) with documentation, tutorials, etc.
e Scientific aspects of algorithms detailed in journal papers

10


https://gitlab.onelab.info/gmsh/gmsh
https://gmsh.info

% * LIEGE . i ¥ UCLouvain
Strategic choices

e Community infrastructure
e Our own (using GitLab) to enable public/private parts
(https://gitlab.onelab.info/gmsh/gmsh)
o Continuous integration and delivery (Cl/CD) of Gmsh app and Gmsh SDK
on Windows, Linux and macOS
e Web site (https://gmsh.info) with documentation, tutorials, etc.
e Scientific aspects of algorithms detailed in journal papers
e Licensing
o Gmsh is distributed under the GNU General Public License v2 or later, with
exceptions to allow for easier linking with external libraries
e We double-license to enable embedding in commercial codes

10
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Basic concepts

e Gmsh is based around four modules: Geometry, Mesh, Solver and
Post-processing
e Gmsh can be used at 3 levels

e Through the GUI
e Through the dedicated .geo scripting language
e Through the C4++, C, Python, Julia and Fortran API

11
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Basic concepts

e Gmsh is based around four modules: Geometry, Mesh, Solver and
Post-processing
e Gmsh can be used at 3 levels
e Through the GUI
e Through the dedicated .geo scripting language
e Through the C4++, C, Python, Julia and Fortran API
e Main characteristics
e All algorithms are written in terms of abstract model entities, using a
Boundary REPresentation (BREP) approach

e Gmsh never translates from one CAD format to another; it directly accesses
each CAD kernel API (OpenCASCADE, Built-in, ...)

11
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L et Basic concepts

The goal is to deal with very different underlying data representations in a
transparent manner

12
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Geometry module

Under the hood, 4 types of model entities are defined:

1.

Model points GY that are topological entities of dimension 0

2. Model curves G} that are topological entities of dimension 1
3.
4. Model volumes G? that are topological entities of dimension 3

Model surfaces G? that are topological entities of dimension 2

13
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it Geometry module

e Model entities are topological entities, i.e., they only deal with adjacencies in
the model; a bi-directional data structure represents the graph of adjacencies

0 _ 1 2 . 13
K =Gl=G =G

e Any model is able to build its list of adjacencies of any dimension using local
operations

14
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Geometry module

Model entities are topological entities, i.e., they only deal with adjacencies in
the model; a bi-directional data structure represents the graph of adjacencies

0 _ 1 2 . 13
K =Gl=G? =G

Any model is able to build its list of adjacencies of any dimension using local
operations

The BRep is extended with non-manifold features: adjacent entities, and
embedded (internal) entities

Model entities can be either CAD entities (e.g. from the built-in or
OpenCASCADE kernel) or discrete entities (defined by a mesh, e.g. STL)

B UCLouvain

14
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Geometry module

The geometry of a CAD model entity depends on the solid modeler kernel for its

underlying representation. Solid modelers usually provide a parametrization of
the shapes, i.e., a mapping:

peR'— xeR?

1. The geometry of a model point GY is simply its 3-D location x; = (&, y;, 2;)
2. The geometry of a model curve G} is its underlying curve C; with its
parametrization p(t) € C;, t € [ty, ]

3. The geometry of a model surface G? is its underlying surface S; with its
parametrization p(u,v) € S;

4. The geometry associated to a model volume is R3

15
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it Geometry module

Y

z
u = u(z,y, 2)
v vevle )
Lu \\\\ //
\\\ / = t, = t, = t
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o~ ) C
tp P ty

Point p located on a curve C that is itself embedded in a surface S

16
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Geometry module

Operations on CAD model entities are performed directly within their respective
CAD kernels:

e There is no common internal geometrical representation

o Rather, Gmsh directly performs the operations (translation, rotation,

intersection, union, fragments, ...) on the native geometrical representation
using each CAD kernel’s own API

17
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Geometry module
Discrete model entities are defined by a mesh (e.g. STL):

e They can be equipped with a geometry through a reparametrization
procedure

e The parametrization is then used for meshing, in exactly the same way as for
CAD entities

18
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Mesh module

o A (conformal) finite element mesh of a model is a tessellation of its
geometry by geometrical elements of various shapes (lines, triangles,
quadrangles, tetrahedra, prisms, hexahedra, pyramids), arranged in such a
way that if two of them intersect, they do so along a face, an edge or a
node, and not otherwise

19
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Mesh module

o A (conformal) finite element mesh of a model is a tessellation of its
geometry by geometrical elements of various shapes (lines, triangles,
quadrangles, tetrahedra, prisms, hexahedra, pyramids), arranged in such a
way that if two of them intersect, they do so along a face, an edge or a
node, and not otherwise

e Gmsh implements several meshing algorithms with specific characteristics
1D, 2D and 3D

Structured, unstructured and hybrid

Isotropic and anisotropic

Straight-sided and curved

From standard CAD data or from STL through reparametrization

19
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Mesh module

o A (conformal) finite element mesh of a model is a tessellation of its
geometry by geometrical elements of various shapes (lines, triangles,
quadrangles, tetrahedra, prisms, hexahedra, pyramids), arranged in such a
way that if two of them intersect, they do so along a face, an edge or a
node, and not otherwise

e Gmsh implements several meshing algorithms with specific characteristics
1D, 2D and 3D

Structured, unstructured and hybrid

Isotropic and anisotropic

Straight-sided and curved

From standard CAD data or from STL through reparametrization

e Built-in interfaces to external mesh generators (BAMG [F. Hecht, 1998],
MMG3D [C. Dobrzynski et al., 2012], Netgen [J. Schoeberl, 1997])

19
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Mesh module
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Typical CAD kernel idiosyncrasies: seam edges and degenerated edges

20
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seam edges and degenerated edges
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Mesh module

e Mesh data is made of elements (points, lines, triangles, quadrangles,
tetrahedra, hexahedra, ...) defined by an ordered list of their nodes

21
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Mesh module

e Mesh data is made of elements (points, lines, triangles, quadrangles,
tetrahedra, hexahedra, ...) defined by an ordered list of their nodes

e Elements and nodes are stored (classified) in the model entity they
discretize:

21
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Mesh module

e Mesh data is made of elements (points, lines, triangles, quadrangles,
tetrahedra, hexahedra, ...) defined by an ordered list of their nodes

e Elements and nodes are stored (classified) in the model entity they

discretize:
e A model point will thus contain a mesh element of type point, as well as a

mesh node

21
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Mesh module

e Mesh data is made of elements (points, lines, triangles, quadrangles,
tetrahedra, hexahedra, ...) defined by an ordered list of their nodes
e Elements and nodes are stored (classified) in the model entity they

discretize:
e A model point will thus contain a mesh element of type point, as well as a

mesh node
o A model curve will contain line elements as well as its interior nodes, while

its boundary nodes will be stored in the bounding model points

21



T !l.nleerCSiIE B UCLouvain
Mesh module

e Mesh data is made of elements (points, lines, triangles, quadrangles,
tetrahedra, hexahedra, ...) defined by an ordered list of their nodes
e Elements and nodes are stored (classified) in the model entity they
discretize:
e A model point will thus contain a mesh element of type point, as well as a
mesh node
e A model curve will contain line elements as well as its interior nodes, while
its boundary nodes will be stored in the bounding model points
e A model surface will contain triangular and/or quadrangular elements and all
the nodes not classified on its boundary or on its embedded entities (curves
and points)

21
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Mesh module

e Mesh data is made of elements (points, lines, triangles, quadrangles,
tetrahedra, hexahedra, ...) defined by an ordered list of their nodes

e Elements and nodes are stored (classified) in the model entity they
discretize:

e A model point will thus contain a mesh element of type point, as well as a
mesh node

e A model curve will contain line elements as well as its interior nodes, while
its boundary nodes will be stored in the bounding model points

e A model surface will contain triangular and/or quadrangular elements and all
the nodes not classified on its boundary or on its embedded entities (curves
and points)

e A model volume will contain tetrahedra, hexahedra, etc. and all the nodes
not classified on its boundary or on its embedded entities (surfaces, curves
and points)

21
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Mesh module

This mesh data structure allows to easily
and efficiently handle the creation,
modification and destruction of
conformal finite element meshes

22
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Solver module

e Gmsh implements a ONELAB (https://onelab.info) server to pilot
external solvers, called “clients”

o Example client: GetDP finite element solver (https://getdp.info)

e The ONELAB interface
allows to call such clients
and have them share
parameters and modeling
information

e Parameters are directly
controllable from the
GUI

23
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G et Solver module

e The implementation is based on a client-server model, with a server-side
database and local or remote clients communicating in-memory or through

TCP/IP sockets

24
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Solver module

e The implementation is based on a client-server model, with a server-side
database and local or remote clients communicating in-memory or through
TCP/IP sockets

o Contrary to most solver interfaces, the ONELAB server has no a priori
knowledge about any specifics (input file format, syntax, ...) of the clients

e This is made possible by having any simulation preceded by an analysis
phase, during which the clients are asked to upload their parameter set to
the server

e The issues of completeness and consistency of the parameter sets are
completely dealt with on the client side: the role of ONELAB is limited to
data centralization, modification and re-dispatching

B UCLouvain

24
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Post-processing module

e Post-processing data is made of views

e A view stores both display options and data (unless the view is an alias of
another view)

25
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Post-processing module

e Post-processing data is made of views

e A view stores both display options and data (unless the view is an alias of
another view)

o View data can contain several steps (e.g. to store time series) and can be
either linked to one or more models (mesh-based data, as stored in .msh or
.med files) or independent from any model (/ist-based data, as stored in
parsed .pos files)

e Data is interpolated through arbitrary polynomial interpolation schemes;
automatic mesh refinement is used for adaptive visualization of high-order
views

e Various plugins exist to create and modify views

25



& LIEGE i ¥ UCLouvain
Post-processing module

Cuts, iso-curves and vectors

Elevation maps

Streamlines

Adaptive high-order visualization

26
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Application Programming Interface

Gmsh 4 introduced a stable Application Programming Interface (API) for C++,
C, Python, Julia and Fortran, with the following design goals:

e Allow to do everything that can be done in .geo scripts

27
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Gmsh 4 introduced a stable Application Programming Interface (API) for C++,
C, Python, Julia and Fortran, with the following design goals:

e Allow to do everything that can be done in .geo scripts
e ... and then much more!
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Application Programming Interface

Gmsh 4 introduced a stable Application Programming Interface (API) for C++,
C, Python, Julia and Fortran, with the following design goals:

e Allow to do everything that can be done in .geo scripts
e ... and then much more!

e Be robust, in particular to wrong input data
o Be efficient; but still allow to do simple things, simply

e Be maintainable over the long run

27



:ﬁ uLnllvEegtEe . . . B UCLouvain
Application Programming Interface

To achieve these goals the Gmsh API
e is purely functional

e only uses basic types from the target language (C++, C, Python, Julia and
Fortran)

e is automatically generated from a master API description file

e is documented

28
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Application Programming Interface

In addition to CAD creation and meshing, the APl can be used to
o Access mesh data (getNodes, getElements)

29
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Application Programming Interface

In addition to CAD creation and meshing, the APl can be used to
o Access mesh data (getNodes, getElements)

e Generate interpolation (getBasisFunctions) and integration
(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

29
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Application Programming Interface

In addition to CAD creation and meshing, the APl can be used to
o Access mesh data (getNodes, getElements)

e Generate interpolation (getBasisFunctions) and integration
(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

o Create post-processing views

29
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Application Programming Interface

In addition to CAD creation and meshing, the APl can be used to
o Access mesh data (getNodes, getElements)

e Generate interpolation (getBasisFunctions) and integration
(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

o Create post-processing views

e Run the graphical user-interface
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Application Programming Interface

In addition to CAD creation and meshing, the APl can be used to
o Access mesh data (getNodes, getElements)

e Generate interpolation (getBasisFunctions) and integration
(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

o Create post-processing views
e Run the graphical user-interface

e Build custom graphical user-interfaces, e.g. for domain-specific codes (see
gmsh/examples/api/prepro.py or
gmsh/examples/api/custom_gui.py) or co-post-processing via ONELAB

29
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‘ Application Programming Interface

We publish a binary Software Development Toolkit (SDK):
o Continuously delivered (for each commit in master), like the Gmsh app
o Contains the dynamic Gmsh library together with the corresponding C++/C
header files, and Python, Julia and Fortran modules

Download

Gmsh is distributed under the terms of the GNU General Public License (GPL):

« Current stable release (version 4.14.1, 2 September 2025):
o Download Gmsh for Windows, Linux, macOS (x86) or macOS (ARM) *
o Download the source code
o D the D Kit (SDK) for Wi , Linux, macOS (x86) or macOS (ARM) :
o Download both Gmsh and the SDK with pip: 'pip install --upgrade gmsh'

Make sure to read the tutorial and the FAQ before sending questions or bug reports.

« Development version:

Download the latest automatic Gmsh snapshot for Windows, Linux, macOS (x86) or macOS (ARM) *
Download the latest automatic source code snapshot

Download the latest automatic SDK snapshot for Windows, Linux, macOS (x86) or macOS (ARM) )
Access the Git repository: 'git clone https://gitlab.onelab.info/gmsh/gmsh. gn:

Download the latest automatic snapshot of both Gmsh and the SDK with pip: 'pip install -i
nstall he-dir gmsh' (0N Linux systems without X

o

o o0 o o

https://gmsh.info/python-pack
Windows, use python-packages-d instead of python-packages-dev)

« All versions: binaries and sources

30
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Download

To download the Gmsh SDK:

e Simplest way:
pip install --upgrade gmsh

31
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Download

To download the Gmsh SDK:

e Simplest way:
pip install --upgrade gmsh

e For the latest development version:

pip install -i https://gmsh.info/python-packages-dev
-—-force-reinstall --no-cache-dir gmsh
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Download

To download the Gmsh SDK:

e Simplest way:
pip install --upgrade gmsh

e For the latest development version:
pip install -i https://gmsh.info/python-packages-dev

-—-force-reinstall --no-cache-dir gmsh

e All other options: go to https://gmsh.info
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First .geo script

Save this script as a text file file.geo:

lc = 0.1; // target mesh size at points
Point (1) {0, 0, 0, 1c};

Point (2) = {1, 0, 0, 1lc};
Point(3) = {1, 1, 0, 1lc};
Point (4) = {0, 1, 0, 1lc};

Line (1) = {1, 2};

Line(2) = {2, 3};

Line(3) = {3, 4};

Line (4) = {4, 1};

Curve Loop(1) = {1, 2, 3, 4};
Plane Surface (1) = {1};
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First .geo script

Save this script as a text file file.geo:

lc = 0.1; // target mesh size at points
Point (1) {0, 0, 0, 1lc};

Point (2) = {1, 0, 0, 1lc};
Point(3) = {1, 1, 0, 1lc};
Point (4) = {0, 1, 0, 1lc};

Line (1) = {1, 2};

Line(2) = {2, 3};

Line(3) = {3, 4};

Line (4) = {4, 1};

Curve Loop(1) = {1, 2, 3, 4};
Plane Surface (1) = {1};

e Run the script interactively with gmsh file.geo
e Or launch the Gmsh app and open the script with the File/Open menu
e Or create a mesh in batch mode with gmsh file.geo -2
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Save this as a Python script file.py:

import gmsh
.initialize ()
0.1 # mesh

gmsh
lc =
pl =
p2 =
p3 =
pd =
11 =
12 =
13 =
14 =
cl =
gmsh
gmsh
gmsh
gmsh

gmsh.
gmsh.
gmsh.
gmsh.
gmsh.
gmsh.
gmsh.
gmsh.
gmsh.

model.
model.
model .
.geo.addPoint (0, 1,

.geo.addLine (p1l, p2)
model.
model.
model.
model .

model
model

size at points
geo.addPoint (0, 0, O
geo.addPoint (1, 0, O,
1, 0

0

geo.addPoint (1,

>

geo.addLine (p2, p3)
geo.addLine (p3, p4)
geo.addLine (p4, pl)
geo.addCurveLoop ([11,

.model.geo.addPlaneSurface ([cl])
.model.geo.synchronize () # sync CAD kermnel data to model
.fltk.run() # launch the GUI
.finalize ()

1lc)
1lc)
lc)
1lc)

12,

[N UCLouvain

Same in Python using the Gmsh API

13, 141)
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Save this as a Python script file.py:

import gmsh
.initialize ()
0.1 # mesh

gmsh
lc =
pl =
p2 =
p3 =
pd =
11 =
12 =
13 =
14 =
cl =
gmsh
gmsh
gmsh
gmsh

gmsh.
gmsh.
gmsh.
gmsh.
gmsh.
gmsh.
gmsh.
gmsh.
gmsh.

model.
model.
model .
.geo.addPoint (0, 1,

.geo.addLine (p1l, p2)
model.
model.
model.
model .

model
model

size at points
geo.addPoint (0, 0, O
geo.addPoint (1, 0, O,
1, 0

0

geo.addPoint (1,

>

geo.addLine (p2, p3)
geo.addLine (p3, p4)
geo.addLine (p4, pl)
geo.addCurveLoop ([11,

.model.geo.addPlaneSurface ([cl])
.model.geo.synchronize () # sync CAD kermnel data to model
.fltk.run() # launch the GUI
.finalize ()

Run with python3 file.py

1lc)
1lc)
lc)
1lc)

12,

[N UCLouvain

Same in Python using the Gmsh API

13, 141)

34
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v Constructive Solid Geometry (CSG)

— \a
/A\

OO&%
Q

https://en.wikipedia.org/wiki/Constructive_solid_geometry
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s CSG with a .geo script

SetFactory ("OpenCASCADE"); // use OpenCASCADE CAD kernel

R = DefineNumber[ 1.4 , Min 0.1, Max 2, Step 0.01,
Name "Parameters/Box dimension" ];

Rs = DefineNumber[ R*.7 , Min 0.1, Max 2, Step 0.01,
Name "Parameters/Cylinder radius" ];
Rt = DefineNumber[ R*1.25, Min 0.1, Max 2, Step 0.01,

Name "Parameters/Sphere radius" 1;
Box(1) = {-R,-R,-R, 2*R,2*R,2*R}; // explicit entity tag
Sphere(2) = {0,0,0, Rt};

BooleanIntersection(3) = { Volume{1}; Delete; }{ Volume{2}; Delete; I};
// delete object and tool

Cylinder (4)
Cylinder (5)
Cylinder (6)

{-2%R,0,0, 4%R,0,0, Rs};
{0,-2%xR,0, 0,4%R,0, Rs};
{0,0,-2%R, 0,0,4%R, Rs};

BooleanUnion(7) = { Volume{4}; Delete; }{ Volume{5,6}; Delete; };
BooleanDifference(8) = { Volume{3}; Delete; }{ Volume{7}; Delete; };

36



0 LiEeE

[ JON ) Gmsh - boolean.geo
v Modules
» Geometry
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gmsh/examples/boolean/boolean.geo

37


https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/boolean/boolean.geo

W LIEGE vai
S et CSG with the Python API W ckouvaln

Same example, but using the Python API:

import gmsh

gmsh.initialize ()
gmsh.model.add("boolean")

R =1.4; Rs = R*¥.7; Rt = Rx1.25

gmsh.model.occ.addBox(-R,-R,-R, 2*R,2*R,2%R, 1)
gmsh.model.occ.addSphere(0,0,0,Rt, 2)
gmsh.model.occ.intersect ([(3, 1)1, [(3, 2)]1, 3)
gmsh.model.occ.addCylinder (-2*R,0,0, 4*R,0,0, Rs, 4)
gmsh .model.occ.addCylinder (0,-2%R,0, 0,4*R,0, Rs, 5)
gmsh.model.occ.addCylinder (0,0,-2%xR, 0,0,4%R, Rs, 6)
gmsh.model.occ.fuse([(3, 4), (3, 5)1, [(3, 6)], 7)
gmsh.model.occ.cut ([(3, 3)], [(3, 7)1, 8)

gmsh.model.occ.synchronize ()
gmsh.model .mesh.generate (3)
gmsh.fltk.run()
gmsh.finalize ()

gmsh/examples/api/boolean.py
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CSG with the C++4+ API
or using the C++ API:

#include <gmsh.h>

int main(int argc, char x*argv)

gnsh::initialize (argc, argv);
: ::add("boolean");

double R = 1.4, Rs = R*.7, Rt = R*1.25;

std::vector<std::pair<int, int> > ov;
std::vector<std::vector<std::pair<int, int> > > ovv;

gmsh:: addBox (-R,-R,-R, 2%R,2%R,2%R, 1);

gmsh:: addSphere(0,0,0,Rt, 2);

gmsh:: intersect ({{3, 1}}, {{3, 2}}, ov, ovv, 3);
gmsh:: addCylinder (-2%R,0,0, 4%R,0,0, Rs, 4);
gmsh:: addCylinder (0,-2%R,0, 0,4%R,0, Rs, 5);
gmsh:: addCylinder (0,0,-2*%R, 0,0,4*R, Rs, 6);
gmsh:: ::fuse ({{3, 4}, {3, 5}}, {{3, 6}}, ov, ovv, 7);
gmsh:: scut ({{3, 3}}, {{3, 7}}, ov, ovv, 8);

gnsh::model::occ::synchronize ();

gmsh::finalize ();
return 0;

gmsh/examples/api/boolean.cpp

[B UCLouvain
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Triangulations

A simplex is a generalization of the notion of a triangle or tetrahedron to
arbitrary dimensions

A triangulation T(S) of the n points S = {p1,...,p,} € R%is a set of non

overlapping simplices that covers exactly the convex hull ©(.S) of the point set,
and leaves no point p; isolated

4
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Triangulations

A simplex is a generalization of the notion of a triangle or tetrahedron to
arbitrary dimensions

A triangulation T(S) of the n points S = {p1,...,p,} € R%is a set of non
overlapping simplices that covers exactly the convex hull ©(.S) of the point set,
and leaves no point p; isolated

Points p; are in general position when they do not fall on subvarieties of lower
degree than necessary; in the plane two points should not be coincident, three
points should not fall on a line, four points should not fall on a circle
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Triangulations

There exist a finite but combinatorial number of triangulations (Catalan
numbers) for a given set of points

In dimension 2, the number of triangles is constant for every triangulation of the
same set of points; this is not true in 3D and in higher dimensions

The Delaunay triangulation is a special triangulation that exists and is unique if
points are in general position

42
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Triangulations

There exist a finite but combinatorial number of triangulations (Catalan
numbers) for a given set of points

In dimension 2, the number of triangles is constant for every triangulation of the
same set of points; this is not true in 3D and in higher dimensions

The Delaunay triangulation is a special triangulation that exists and is unique if
points are in general position

There exist algorithms to generate the Delaunay triangulation in O(nlog(n))
complexity! Yet, the constant grows rapidly with the dimension d
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Delaunay triangulation

The Delaunay triangulation DT(.S) of a point set S has the fundamental
geometrical property that the circumsphere of any simplex is empty

If the empty sphere condition is verified for all simplices, the triangulation T'(.S)
is said to be a Delaunay triangulation

In dimension 2, DT(S) has interesting properties

43



& LIEGE e W UCLouvain
The Voronoi diagram

Consider a finite set S = {py,...,p,} C R? of n distinct points in the plane.
The Voronoi cell V; of p; € S is the set of points x that are closer to p; than to
any other points of the set:

V%:{xe]Rﬂ HZ‘—p¢H<Hx—pj||, VlSZ’Sn,i;ﬁj}

where ||z — y|| is the euclidean distance between x and y

o i
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The Voronoi diagram
The Voronoi diagram V' (S) is the unique subdivision of the plane into n cells. It

is the union of all Voronoi cells V);:

J Vi
|
|
|
~ P ' p1
| o
|
N re
o ~ ’
/ ¥ ° .
o i pi e
| o \ .
/ Pl gl
"""""" . vr \ °
---0
% s Pk
Q / pi \ o
\
S -
o -q -
S . v e}
T o
O \
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The Delaunay triangulation

The Delaunay triangulation DT(S) is the geometric dual of the Voronoi diagram
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The empty circle property

The circumcircle of any triangle in the Delaunay triangulation is empty i.e. it
contains no point of S

Cr pi

o Consider the Delaunay triangle A; = p;p,ps.
Assume now that point p; € C; where C7 is the
circumcircle of Ay

o By definition, the triple point v; is at equal distance
to p;, p; and p; and no other points of S are closer
to vy than those three points

e Then, if a point like p; exist in S, vy is not a triple
point and triangle A; cannot be a Delaunay triangle

B UCLouvain
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The MaxMin property

The Delaunay triangulation DT(S) is angle-optimal: it maximizes the minimum
angle among all possible triangulations

Thales theorem (left) and MaxMin property illustrated (right)
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Bowyer-Watson algorithm

Let DT,, be the Delaunay triangulation of a point set S, = {p1,...,pn} C R?
that are in general position

The Bowyer-Watson algorithm is an incremental process allowing the insertion of
a given point p, 41 € €(S,) into DT,, and to build the Delaunay triangulation

DT,q1 of Sy = {Pb e apnapn-i-l}
DT, =DT, — C(DTn,an) + B(DTn,an). (1)
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Bowyer-Watson algorithm

The Delaunay cavity C(T,,, pn+1) is the set of m triangles Ay, ..., A, € DT, for
which their circumcircle contains p,, 1

The Delaunay cavity contains the set of triangles that cannot belong to 7},,1:
the region covered by those invalid triangles should be emptied and
re-triangulated in a Delaunay fashion
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et Bowyer-Watson algorithm
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Super triangles:
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Bowyer-Watson algorithm

P-4

pi

Q.

Pi__.

Pk
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e Use Bowyer-Watson algorithm

DTyy1 =DTy — C(DTy, pes1) + B(DTk, prs1)

[N UCLouvain
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DT of n points in nlog(n) complexity

e Use Bowyer-Watson algorithm

e Sort the points [N. Amenta, S. Choi, and G. Rote. Incremental constructions
con BRIO, 2003]: the Biased Randomized Insertion Order can e.g. use a
space-filling curve like a Hilbert curve

Without sort: O(n'/?) “walking” steps per insertion — overall (best) complexity
of O(nta)

P
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DT of n points in nlog(n) complexity

e Use Bowyer-Watson algorithm

e Sort the points [N. Amenta, S. Choi, and G. Rote. Incremental constructions
con BRIO, 2003]: the Biased Randomized Insertion Order can e.g. use a
space-filling curve like a Hilbert curve

With sort along Hilbert curve: constant number of steps

n 10° 10* 10° 10° ] 10° 10 10° 10°
2D 3D
Nuyaik | 23 73 230 727 [ 17 38 85 186
t(sec) | 36107 9.1107% 3.98 187 [ 1.2107% 1.8107! 342 73
2D (BRIO) 3D (BRIO)
Nuyak | 2.3 2.4 2.5 25 [29 3.0 31 3.1
t(sec) | 2107 15107 15107' 147 ]9.0107* 7510°% 7.810°' 781

Sorting cost is O(nlog(n)) — overall (best) complexity O(nlog(n))
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DT of n points in nlog(n) complexity

e Use Bowyer-Watson algorithm

e Sort the points [N. Amenta, S. Choi, and G. Rote. Incremental constructions
con BRIO, 2003]: the Biased Randomized Insertion Order can e.g. use a
space-filling curve like a Hilbert curve

e Multithreading: distribute the Hilbert curve in M threads

M-1
DTyt1 =DTy + [_C(DTkakari%) + B<DTk7pk+i%>} :
i=0
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Multithreaded meshing in Gmsh

The meshing pipeline is multithreaded using OpenMP:
e 1D and 2D algorithms are multithreaded using coarse-grained approach, i.e.
several curves/surfaces are meshed concurrently

e The new 3D Delaunay-based algorithm (HXT) is multi-threaded using a
fine-grained approach based on Hilbert curve (more precisely a Moore curve)

sort
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Multithreaded meshing in Gmsh

The meshing pipeline is multithreaded using OpenMP:

e 1D and 2D algorithms are multithreaded using coarse-grained approach, i.e.
several curves/surfaces are meshed concurrently

e The new 3D Delaunay-based algorithm (HXT) is multi-threaded using a
fine-grained approach based on Hilbert curve (more precisely a Moore curve)

sort

You can specify the number of threads with the General.NumThreads option
(set it to O to use the system value), or with the -nt command line switch:

gmsh file.geo -3 -nt 8 -algo hxt
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Multithreaded meshing in Gmsh

e Points are partitioned such that each point belongs to a single thread
e A triangle can only be modified by a thread that owns all of its three nodes

e Triangles that cannot be modified by any thread form a buffer zone
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Multithreaded meshing in Gmsh

Modification of the partitions to insert the points for which insertion failed
because the point cavity spans multiple partitions:

e Circular shift to move the zero index around the Hilbert/Moore curve

e Coordinates below a random threshold are linearly compressed, whereas
coordinates above the threshold are linearly expanded
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Multithreaded meshing in Gmsh

| # vertices 10*  10° 10° 107

Ours 0.032 0.13 085 7.40
Geogram  0.041 0.19 173 17.11
= CGAL 0.037 024 220 2337

10* 10° 106 107
Number of points (random uniform distribution)

(@) 4-core Intel® Core™ i7-6700HQ CPU.

#vertices  10*  10°  10° 107 108

Ours 0.11 043 117 448 2895
Geogram  0.10 0.54 4.58 43.70 /
CGAL 027 048 244 2015 /

| |
10* 108 10° 107 108
Number of points (random uniform distribution)

(b) 64-core Intel® Xeon Phi™ 7210 CPU.

[B UCLouvain

[C. Marot et al., IJNME 2019]
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Multithreaded meshing in Gmsh

Truck tire
Timings (s)
#threads # tetrahedra BR Refine Total
1 123640429 759 259.7 364.7
2 123593913 745 166.8 267.1
4 123625696 742 107.4 203.6
8 123452318 742 95.5 190.0
Aircraft
Timings (s)

# threads  # tetrahedra BR Refine Total
1 672209630 452 13485 1418.3
2 671432038 42.1 11489 1211.5
8 665826109 39.6 7148 774.8
64 664587093 38.7 3223  380.9

127 663921974 38.1 2550 3133

AMD EPYC 2x 64-core

B UCLouvain
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Multithreaded meshing in Gmsh

100 thin fibers

Timings (s)
Refine  Total
1 325611841 3.1 492.1 4972
2 325786170 2.9 3297 3343
4 325691796 2.8 2295 2339
8 325211989 27 1546 158.7

16 324897471 2.8 96.8 100.9

32 325221244 2.7 717 758

64 324701883 2.8 558  60.1

127 324190447 29 476 520

#threads  # tetrahedra

500 thin fibers

Timings (s)
BR  Refine Total

1 723208595 18.9 1205.8 1234.4
2 723098577 160  780.3  804.8
4 722664991 86.6 567.1  659.8
8 722329174 158 349.1  370.1
16 723093143 156 2162  236.5
32 722013476 156  149.7  169.8
64 721572235 159 1197 1404
127 721591846 159 1142 1352

#threads  # tetrahedra

AMD EPYC 2x 64-core
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More ingredients: boundary recovery

Remember the super triangles?

e For conformal finite element mesh generation Gmsh starts from the
boundary mesh, i.e. boundary segments in 2D and boundary triangles in 3D

60
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More ingredients: boundary recovery

Remember the super triangles?

e For conformal finite element mesh generation Gmsh starts from the
boundary mesh, i.e. boundary segments in 2D and boundary triangles in 3D

e An “empty mesh” is created first, triangulating the boundary points
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université

More ingredients: boundary recovery

Remember the super triangles?
e For conformal finite element mesh generation Gmsh starts from the
boundary mesh, i.e. boundary segments in 2D and boundary triangles in 3D
e An “empty mesh” is created first, triangulating the boundary points

e The boundary segments/triangles are then “recovered” so that they are
edges/faces of the interior triangles/tetrahedra
e In the 3D case Gmsh uses Tetgen's boundary recovery code [H. Si. Tetgen,
a Delaunay-based quality tetrahedral mesh generator., 2015]

60
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More ingredients: boundary recovery

Remember the super triangles?
e For conformal finite element mesh generation Gmsh starts from the
boundary mesh, i.e. boundary segments in 2D and boundary triangles in 3D
e An “empty mesh” is created first, triangulating the boundary points

e The boundary segments/triangles are then “recovered” so that they are
edges/faces of the interior triangles/tetrahedra
e In the 3D case Gmsh uses Tetgen's boundary recovery code [H. Si. Tetgen,
a Delaunay-based quality tetrahedral mesh generator., 2015]

o Then the mesh is refined with (multi-threaded) point insertion

60



% ® LIEGE N UCLouvain

université

More ingredients: mesh improvement

Once a mesh with the desired local mesh size is obtained by point insertion, a
final improvement step is performed to
e locally eliminate badly shaped tetrahedra (e.g. slivers)
e optimize the quality of the mesh by means of specific topological operations
and vertex relocations (flipping, edge removal, smoothing, small polyhedron
reconnection, ...)

61
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S et Surface meshing

e When mesh generation procedures have access to parametrizations of
surfaces, one can generate a planar mesh in the parametric domain and map
it in 3D —it is an indirect approach

63
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S et Surface meshing

e When mesh generation procedures have access to parametrizations of
surfaces, one can generate a planar mesh in the parametric domain and map
it in 3D —it is an indirect approach

e In Gmsh, surface meshes are generated in the parameter plane (u,v) and
standard “off the shelf” anisotropic 2D meshers are used for generating
surface meshes
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S et Surface meshing

e When mesh generation procedures have access to parametrizations of
surfaces, one can generate a planar mesh in the parametric domain and map
it in 3D —it is an indirect approach

e In Gmsh, surface meshes are generated in the parameter plane (u,v) and
standard “off the shelf” anisotropic 2D meshers are used for generating
surface meshes

e Ensuring that a planar mesh is valid is trivial: all triangles should be
positively oriented

63
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Surface meshing

e When mesh generation procedures have access to parametrizations of
surfaces, one can generate a planar mesh in the parametric domain and map
it in 3D —it is an indirect approach

e In Gmsh, surface meshes are generated in the parameter plane (u,v) and
standard “off the shelf” anisotropic 2D meshers are used for generating
surface meshes

e Ensuring that a planar mesh is valid is trivial: all triangles should be
positively oriented

e If the surface parametrization x(u,v) € R? is regular, then the mapping of
the (u,v) mesh onto the surface is itself valid because the composition of
two regular mappings is regular
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In this example, the depicted trimmed surface has no irregular points and the
mesh generation procedure is quite straightforward: the anisotropic
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Surface meshing: singularities

Surfaces with isolated irregular points are however very common in CAD systems:
spheres, cones and other surfaces of revolution may contain one or two
irregular /singular points

Mesh generation procedures are known to be prone to failure close to irregularities
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Surface meshing: singularities

Surfaces with isolated irregular points are however very common in CAD systems:
spheres, cones and other surfaces of revolution may contain one or two
irregular /singular points

Mesh generation procedures are known to be prone to failure close to irregularities
Consider a sphere of radius R centered at the origin is parametrized as

z(u,v) = R sinu cosv
y(u,v) = R sinu sinv

z(u,v) = R cosu

where u € [0, 7] is the inclination and v € [0, 27| is the azimuth
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Surface meshing: singularities

At the poles, i.e. when v =0 or u =,
Opyx = R(—sinusin v, sinucosv,0) = (0,0,0)

vanishes and this parametrization is irregular
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Surface meshing: singularities

At the poles, i.e. when u =0 or u =,

Opyx = R(—sinusin v, sinucosv,0) = (0,0,0)

vanishes and this parametrization is irregular

All the straight-sided 3D triangles above would be invalid (zero-area)

[B UCLouvain
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Consider an edge (a, b) with b close to the pole p:
e Plot of iso-values of quality of a triangle (a, b, ¢) with ¢ positioned anywhere in
the parameter plane
e Shaded zone corresponds to positions of ¢ leading to invalid triangles in 3D
e Observe zones where valid 2D triangles are invalid in 3D, and conversely!

Valid in 3D but not in (%, v)

T T T
0 0785 157 23 E 38 in 55
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The main issue here is not the fact that the metric tensor is of rank 1 at irregular
points and very distorted around it
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Surface meshing in Gmsh

The main issue here is not the fact that the metric tensor is of rank 1 at irregular
points and very distorted around it

The issue is essentially related to triangles (e.g. (b, ¢, d), valid in 2D but not in
3D) and edges that have one node like b that corresponds to an irregular point of
the parametrization

68
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Consider a surface of revolution with respect to the z-axis and suppose that the
generating curve is ¢(v) = (f(v),0,g9(v)) , v e[0,T]
The parametrization of the surface is given by

x(u,v) = (f(v) cos(u), f(v)sin(u), g(v)) , (u,v) € [0,2m[x[0,T]

One interesting property of surfaces of revolution is that meridian curves u = cst
are geodesics.

c
meridian

§

singular point
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Solution: replace all the edges that are incident to irregular points by geodesics
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Surface meshing in Gmsh

Solution: replace all the edges that are incident to irregular points by geodesics

o
|
|
“ %005‘

The edge flip algorithm in Gmsh 4 has been updated for this new representation
for both Delaunay-based and local mesh adaptation algorithm (MeshAdapt)
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1. Each edge that is too long is split

2. Each edge that is too short is collapsed

3. Edge flips are performed in order to obtain a better configuration
4. Vertices are re-located optimally after steps 1, 2 and 3

ba bq ba _ bc ba
flip
e
a a
c d c d
split j x collapse split l [ collapse

by, be by

a
C d

a

ba be ba
relocate
- o}
> d

P
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Gmsh’s MeshAdapt algorithm
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Gmsh’s MeshAdapt algorithm

Gmsh's surface meshing pipeline defaults to MeshAdapt when other (e.g.
Delaunay-based) algorithms fail

// Script to generate a CAD model with 5000 spherical inclusions in a cube
SetFactory ("OpenCASCADE");

DefineConstant [

rmin = {0.002, Name "Min radius"}
rmax = {0.03, Name "Max radius"}
n = {500, Name "Number of spheres"}
1;
For i In {1:n}
r = rmin + Rand(rmax - rmin);
x = -0.5 + Rand(1);
y = -0.5 + Rand(1);
z = -0.5 + Rand (1);
Sphere(i) = {x, y, z, r };
EndFor

Box(n + 1) = {-0.5, -0.5, -0.5, 1, 1, 1 };
BooleanDifference { Volume{n + 1}; Delete; }{ Volume {1:n}; Delete; 1}
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Discrete surface meshing

In order to apply the indirect surface meshing approach to discrete surfaces, i.e.
surfaces described by a triangulation 7', we need to compute a parametrization of
T

m
AT
NS
LA SR
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Computing discrete parametrizations

Assume T' is a triangulation of a simply connected surface S

Finding a parametrization of 7" consists in assigning to every vertex p;(x;, y;, 2;)
of the triangulation a pair of parametric coordinates (u;, v;) € S’
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Computing discrete parametrizations

Assume T' is a triangulation of a simply connected surface S

Finding a parametrization of 7" consists in assigning to every vertex p;(x;, y;, 2;)
of the triangulation a pair of parametric coordinates (u;, v;) € S’

If every triangle (p;, p;, pr), with p, € R? of the triangulation has a positive area
in the (u;v) plane, then the parametrization is injective
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Computmg discrete parametrlzatlons

Assume T' is a triangulation of a simply connected surface S

Finding a parametrization of 7" consists in assigning to every vertex p;(x;, y;, 2;)
of the triangulation a pair of parametric coordinates (u;, v;) € S’

If every triangle (p;, p;, pr), with p, € R? of the triangulation has a positive area
in the (u;v) plane, then the parametrization is injective

Consider an internal vertex i of 7" and J(i) the set of indices whose the
corresponding nodes are connected to the node i (in other words, edge (i, j)
exists Vj € J(7))
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Computing discrete parametrizations

The value of the parametric coordinates (u;, v;) at vertex i will be computed as a
weighted average of the coordinates (u;, v;) of its neighboring vertices:

E )\”(uZ — Uj) =0 s E )\ij(’Ui — Uj) =0
JeJ(@) JeJ (@)
where );; are coefficients

This scheme is a called a difference scheme that involves only differences
(u; —uj ), with j € J(7)

v
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Computing discrete parametrizations

The value of the parametric coordinates (u;, v;) at vertex i will be computed as a
weighted average of the coordinates (u;, v;) of its neighboring vertices:

E )\”(uZ — Uj) =0 s E )\ij(’Ui — Uj) =0
JeJ(@) JeJ (@)
where );; are coefficients

This scheme is a called a difference scheme that involves only differences
(u; —uj ), with j € J(7)

If every \;; is positive, values of u; and v; are convex combinations of their
surrounding values

v
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Computmg discrete parametrlzatlons

The value of the parametric coordinates (u;, v;) at vertex i will be computed as a
weighted average of the coordinates (u;, v;) of its neighboring vertices:

E )\”(uZ — Uj) =0 s E )\ij(’Ui — Uj) =0
JEeJ (i) JeJ (@)
where );; are coefficients

This scheme is a called a difference scheme that involves only differences
(u; —uj ), with j € J(7)

If every \;; is positive, values of u; and v; are convex combinations of their
surrounding values

From a geometrical point of view, it actually means that point (u;,v;) lies in the
convex hull H; of its neighboring vertices: it is easy to prove that the mapping
provided by any such positive scheme is one-to-one

v
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One can choose )\iTj”tte = 1, but the smoothness of the parametrization is
important for meshing!

78



w # LIEGE ) .. . B UCLouvain
& et Discrete parametrizations using FE [

One can choose )\iTj”tte = 1, but the smoothness of the parametrization is
important for meshing!

Finite elements (Laplace) is smooth but NOT provably positive

Fem . L cos(fy) | cos(6))
AT (m(@k) + sin(Hl)> '

k

A Mesh u™™M e [-0.00227, 1]

uPt € [0,1] uFEM — —0.00227,0.000147]

~
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Mean value coordinates are provably positive:

\MVC _ tan (%’“) + tan (%)
ij

They are not discretizing Laplace operator even at first order on structured
meshes... but who cares, it discretizes a smooth PDE!

~ J | Figure 5: Types of meshes on a square.
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Discrete surface meshing in Gmsh

Given a conforming “watertight” geometrical triangulation as input, Gmsh'’s
discrete surface meshing pipeline consists in 3 steps:

1. Edge detection to define sub-patches if sharp features need to be preserved
(optional)
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Discrete surface meshing in Gmsh

Given a conforming “watertight” geometrical triangulation as input, Gmsh'’s
discrete surface meshing pipeline consists in 3 steps:
1. Edge detection to define sub-patches if sharp features need to be preserved
(optional)
2. Automatic construction of an atlas of parametrizations, by partitioning the
geometrical triangulation until all computed parametrizations are valid
e Each patch should have zero genus (no “handles”), isomorphic to a disk

(potentially) with holes
e Parametric coordinates should be distinguishable
e Saving the model as a .msh file will contain the discrete curves and surfaces

of the (parametrized) CAD

81
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ks Discrete surface meshing in Gmsh

Given a conforming “watertight” geometrical triangulation as input, Gmsh'’s
discrete surface meshing pipeline consists in 3 steps:
1. Edge detection to define sub-patches if sharp features need to be preserved
(optional)
2. Automatic construction of an atlas of parametrizations, by partitioning the
geometrical triangulation until all computed parametrizations are valid
e Each patch should have zero genus (no “handles”), isomorphic to a disk

(potentially) with holes
e Parametric coordinates should be distinguishable
e Saving the model as a .msh file will contain the discrete curves and surfaces

of the (parametrized) CAD
3. Meshing of all charts of the atlas, possibly in parallel
e All new mesh nodes are guaranteed to be on the input geometrical
triangulation (“no modeling”)
[P. A. Beaufort et al., JCP 2020]
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Batman STL mesh
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&-

Automatic atlas creation: each patch is provably parametrizable by solving a
linear PDE, using mean value coordinates
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Discrete surface
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Discrete surface meshing in Gmsh

Automatic atlas creation, this time with feature edge detection
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Remeshing with feature edge detection
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et Discrete surface meshing in Gmsh

CT scan of an artery: 101 patches created, most because of the large aspect ratio
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Discrete surface meshing in Gmsh

Remeshing of an X-ray tomography image of a silicon carbide foam by P. Duru,
F. Muller and L. Selle (IMFT, ERC Advanced Grant SCIROCCO): 1,802 patches
created for reparametrization
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Optimal mesh

Let us consider a field u(z,y, z) defined in domain 2 and a finite element
approximation uy, of u defined on a mesh M

The quality of a finite element solution u;, depends strongly on its underlying
mesh: the mesh should be dense where the solution exhibits strong variations and
coarse in places where the discretization error is low
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Optimal mesh

Let us consider a field u(z,y, z) defined in domain 2 and a finite element
approximation uy, of u defined on a mesh M

The quality of a finite element solution u;, depends strongly on its underlying
mesh: the mesh should be dense where the solution exhibits strong variations and
coarse in places where the discretization error is low

h-adaptivity consists in controlling the mesh size in order to control the
discretization error

92
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S it Optimal mesh

Let us consider a field u(z,y, z) defined in domain 2 and a finite element
approximation uy, of u defined on a mesh M

The quality of a finite element solution u;, depends strongly on its underlying
mesh: the mesh should be dense where the solution exhibits strong variations and
coarse in places where the discretization error is low

h-adaptivity consists in controlling the mesh size in order to control the
discretization error

The goal:
e Use an error estimation for building a mesh size field
e Develop formulas for describing an optimal mesh

e Minimize the number of elements while controlling the error
e Minimize the error while controlling the number of elements
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S it Optimal mesh

Let us define the elementary discretization error as some norm ||.|| of the
difference between the finite element solution u;, and the exact solution u

¢? = /Q lu — unl|? dv

A posteriori error estimation techniques aim at producing estimates of ¢;
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S it Optimal mesh

Let us define the elementary discretization error as some norm ||.|| of the
difference between the finite element solution u;, and the exact solution u

€2 = /Q e — up||* v

A posteriori error estimation techniques aim at producing estimates of ¢;

The local error converges to zero at a certain convergence rate k

where C depends on u but is independent of h;, the mesh size. The size h; of a
triangle or of a tetrahedron §2; is usually chosen as its circumradius or its
min/max/avg edge length

Let us call M* the optimal mesh and &} the optimal mesh size in the area
defined by element €2; in the original mesh, M
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Optimal mesh

The total error contained in the optimal mesh over the area defined by €2; is

o\ 2k
e? = ¢? hi
i T 1

h;
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Optimal mesh

The total error contained in the optimal mesh over the area defined by €2; is

o\ 2k
e? = ¢? hi
i T 1

h;

The total error contained in the optimal mesh is therefore

N h* 2k
*2_5:*2_2:2 ) _2:272k
1=1 t %

(2

where r; is the size reduction factor of element €);
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The total number of elements in the optimal mesh can be written as

N /h. d N .
vy (i) -2

=1

where d is the dimension of the problem
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The total number of elements in the optimal mesh can be written as

N /h. d N .
V=3 () -xn
=1 1 i=1

where d is the dimension of the problem

An optimal mesh could then be defined as a mesh that results in a specified
discretization error ¢* = e while minimizing the number of elements N*
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Consider function

N N
J(r1, . N A) = er + A (Ze?r;% — 62>
i=1 i=1

for which We search for a stationary point. In order to simplify the computations,
pose t; = rd, which gives

J(t, ..t A) Zt+)\<z £ 2k -2> (3)

We first set

oJ
a—ti_o

that leads to )
= (\ea)THa

with a = 2k/d
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S it Optimal mesh

Then, )
r; = (AeZa)aTra)

Inserting that result in (3) gives
N2 1 —a 1
J(A) = (Z 65*") (e + ) ATa — Ae?
i=1

We have then

97



% * LIEGE ¥ UCLouvain
S it Optimal mesh

1
2a 2 e
(14+a) N 14a da

€; j=16; 2

7”,L~ o éQ == Kefkﬂ (4)

Then

with K independent of 7. The error in one element of the optimal mesh is

*2
€ —2k— 2(—2k—d)/(2k+d) y-—2k— —ok—
;:%27’1-% d:e?ri( )/ (2k+d) pr—2k—d _ jr—2k—d
T

)

The mesh optimization process aims therefore at building a mesh with errors that
are uniformly distributed
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Optimal mesh
Then )
6(12%&) N e”% o
L i
Ty = 2 = Ke; (4)

with K independent of 7. The error in one element of the optimal mesh is

€ —2k— 2(—2k—d)/(2k+d) y-—2k— —ok—
;:%27’1-% d:e?ri( )/ (2k+d) pr—2k—d _ jr—2k—d
7

The mesh optimization process aims therefore at building a mesh with errors that
are uniformly distributed

Drawbacks of this (natural) definition of the optimal mesh:
o Difficulty to predict accurately e;
e It is hard to control N*
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Consider the alternative formula:

N
J(rl,...,rN,)\):Z 2p-2k 4 (Zrld— )
i=1

for which we search for a stationary point. In order to simplify the computations,
pose again t; = r¢, which gives

J(tl,...,tN,A)_gj ‘zk/d+A<Zt— ) (5)

=1
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o7 _
ot;

We first set
0

that leads to .
t; = (ae?)\_l) ot
with o = 2k/d. Then,
r; = (A_le?a)ﬁ

Inserting that result in (5) gives
N 2 1 —a o —
J(A) = (Z eﬁa) (Olea + oﬂTa) ATte — AN
i=1

We have then

oJ N = 1 —a « -1
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This leads to

and then

Optimal mesh

-1 (1+O_/)N

ATFa = 5
— 24« 1
<ZZJ\L1 eil+a) (CK o a1+a>

(1+a)N

1
fi(1+0<) a d(1+a)

i=1%1

2 24a 1
N el+a) <a1+a +a1+a)

ul

[N UCLouvain
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This leads to B
NS (14+a)N
- 2
(SN, (o + arie)
and then .
- i
= ej<12+a> QT (1+a)N (6)

2 N
N ei““) (a% + ozl%a)
Let's give it a try: python3 examples/api/adapt_mesh.py
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Optimal mesh

RSSO AN

(a) Von-Mises stresses, loads (b) Mesh (3,301 triangles)
and fixations deformed structure

o
.L'
VAVAYASSS)

(c) Mesh using of formula (4) (d) Mesh using of formula (6)

N = 3,301, 3,230 triangles &2 = 5.66 107, 1,090 triangles

[B UCLouvain
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Adapted mesh in 3D (253,118 tetrahedra)
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Curvilinear meshes

These techniques generalize to finite element formulations using polynomial order
p greater than one as well

However, there are several direct and indirect effects on the adaptation process
when applied to higher-order finite elements:

e One direct effect is that &k in our formulas is usually larger

e For problems in which the solution is C*°, k = p+ 1 — s where s is the
order of the derivative used when measuring the error

e; = ChY

Increasing p directly increases k

e For a fixed €, this may result in optimal meshes that are so coarse that the
geometrical error may dominate the discretization errors
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Curvilinear meshes

Isoparametric simulations: the curved geometry and the finite element solution
are represented using the same polynomial order

YAVANY -
-

K
4
3
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[
i

g
4
N

p = 5, straight sided p = 5, isoparametric

The use of curved elements is essential: when the geometry is interpolated with
less accuracy than the finite element fields, ill-resolved parts of geometry may
appear to the high order approximation as sharp corners, introducing spurious

stress concentrations

Here, the high order approximation gives an accurate solution on a wrong
geometry
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Generating a high order mesh can not be performed reliably by simply curving the
faces and edges on the geometry: snapping high-order mesh vertices onto the
geometry may cause elements to become tangled and finite element mappings
may become singular

Valid high order meshes have to be curved even inside the domain:

Y

[z x

Naive (one tangled element)  Curved internal edges
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Curvilinear meshes

e Gmsh implements a high-order optimization pipeline that combines global
and local optimization strategies [Toulorge, T., Geuzaine, C., Remacle, J. F., &
Lambrechts, J. (2013). Robust untangling of curvilinear meshes. Journal of
Computational Physics, 254, 8-26]

e A lot remains to be done to generate coarse high-order meshes reliably and
efficiently!

108



i ¥ LIEGE B UCLouvain

université

Curvilinear meshes

e Gmsh implements a high-order optimization pipeline that combines global
and local optimization strategies [Toulorge, T., Geuzaine, C., Remacle, J. F., &
Lambrechts, J. (2013). Robust untangling of curvilinear meshes. Journal of
Computational Physics, 254, 8-26]

e A lot remains to be done to generate coarse high-order meshes reliably and
efficiently!

e Make sure to attend Tim Gabriel’s talk this afternoon for a new take on
the issue
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Split Triangles — Full Quad

One triangle is divided in three quads, 20 lines of code, problem solved?
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A quad ¢ and its the four internal angles a, k =1,2,3,4. We define the
quality Q(q) of ¢ as:
).0). ™)

Greedy quad-dominant algorithm [Frey & Borouchaki, Adaptive
triangular-quadrilateral mesh generation, |IJNME, 1998]

Q(q) = max (1 — 2m’?x <‘72T —

™

Rectangular domain of size 1 x 3 and a mesh size field defined by

h(z,y) = 0.1 4+ 0.08 sin(3x) cos(6y)
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université . Fuu Quad
2h(zx,y) — Match — Split.
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Perfect Matching

A mesh (in black) and its graph (in cyan and red). The set of graph edges
colored in red forms a perfect matching
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In 1965, Edmonds [Edmonds, Jack. Paths, trees, and flowers. Can. J. Math., 1965]
invented the Blossom algorithm that solves the problem of optimum perfect
matching in polynomial time. A straightforward implementation of Edmonds’

algorithm requires O(#V?#F) operations

Since then, the worst-case complexity of the Blossom algorithm has been steadily
improving. The current best known result is

O(#V(#E +log #V))

Gmsh uses the Blossom IV code of Cook and Rohe!, which has been considered
for several years as the fastest available

1Computer code available at http://www2.isye.gatech.edu/~wcook/blossomé/
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Perfect Matching

Try it in Gmsh (see e.g. tutorial 11)...
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ny = 2(ny, — 1) — ny.
An even number of triangles requires an even number of points on the boundary

Even if n, is even, there is in general no guarantee that even one single perfect
matching exists in a given graph

Tutte's theorem : A graph G = (V, E) has no perfect matching if and only if
there is a set S C V' whose removal results in more odd-sized components than
the cardinality ng of S, i.e., the number of elements in .S [Pemmaraju S. and
Skiena S, Computational Discrete Mathematics’, 2003]
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G et Planar Graphs

2D meshes are planar graphs. Gmsh only generates meshes in the parameter
plane

There exists an efficient algorithm (i.e., in polynomial time) that counts perfect
matchings in a planar graph

Cubic graphs, also called trivalent graphs, are graphs for which every node has
exactly 3 adjacent nodes. Every cubic graph has at least one perfect matching
(Oum S., Perfect Matchings in Claw-free Cubic Graphs). It can be proven that
the number of perfect matchings in a cubic graph grows exponentially with #V

On closed surfaces, every triangular mesh has a perfect matching!
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Remacle, J. F., Henrotte, F., Carrier-Baudouin, T., Béchet, E., Marchandise, E.,
Geuzaine, C., & Mouton, T. (2013). A frontal Delaunay quad mesh generator using the
L*° norm. International Journal for Numerical Methods in Engineering, 94(5), 494-512

a

a
N e Y1 Y2
X2 : x|

Ly L oys

Y4

Left : The Voronoi cell of each vertex x is an hexagon of area az\/§/2

Filling R? with equilateral triangles requires thus 2/1/3 times more vertices (i.e.

about 15% more) than filling the same space with right triangles
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Gmsh’s second attempt: delquad

Gmsh's surface mesher is a delaunay-frontal algorithm. Largely inspired by [S.
Rebay Efficient unstructured mesh generation by means of Delaunay triangulation and
Bowyer-Watson algorithm. Journal of computational physics, 106(1), 125-138, 1993]

Combine the robustness of Bowyer-Watson and triangle quality control of frontal
algorithms

Extension to surface meshing and the devil is in the details. One of Gmsh's
oldest algorithms

An example speaks louder than a long speech
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Gmsh’s second attempt: delquad

Gmsh’s frontal Delaunay algorithm tries its best to make equilateral triangles

A front edge e separates triangles that are “done” and other ones that are “not
done”

A new point is added on the orthogonal bissector of ¢ to eventually create an
equilateral triangle

It is possible to very slightly modify the frontal algorithm to create right triangles
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Triangulation in the L°°-norm

The L°°-norm distance

[x2 — 1| = phjglo %2 — x4, = max (|2 — 21, [y2 — 1)

Unit circles

Y

N
\ v

The 2-norm is the only norm that is rotationally invariant

We thus use a cross field to define a local frame at point x
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Triangulation in the L°°-norm

In the L> norm, the following mesh is made of equilateral triangles only.

pES

It is possible to use the same frontal-delaunay algorithm by computing orthogonal
bisectors in the L*°-norm
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The perpendicular bisector, or bisector of the segment delimited by the points
x1 = (—zp, —Yp) and xo = (z,,y,) is by definition the set of points x = (z,y)
equidistant to x; and x5

It is the union of the intersections of circles centered at x; and x5 and having the
same radius

X5 = (=, 2 — )

L=y+Yo—ap) =2
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G et Bisectors in the L>®-norm

x} = (-2, 2%)3 x5 = (2, 23,)
x = (==p,0) X = (zp,0)
,,,,,,, O mmmm
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A right triangle. Perpendicular bisectors of the three segments are coloured in
yellow (edge x1x3), blue (edge x2x3) and cyan (edge x;X32)

Points x!, x? and x? are three circumvents that correspond to the three
circumsquares C', C? and C®

Circumcenter and circumsquare are unique when the points are in general position
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e The new point should not be placed beyond the center x. of the circumsquare of the
active triangle (red triangle), as this would create a triangle with a small edge x,,x4

e The new point should not be placed below the intersection x; of the bisector £ and the
circumsquare C; of the resolved triangle (x1,X2,X3). Inserting a point inside C; would
make the resolved triangle invalid by means of the Delaunay criterion

o If & (xm) = [|x3 — X2/, then the optimal point is x,, = x.. It corresponds to the largest
triangle T;(x., X2, X3) that verifies Roo (T5,0) = 8’ (xp)

X3 = (=T, Yp)
ol

Resolved |

Edge of the front
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université Delquad
We use standard Bowyer-Watson to connect the points i.e. we do Delaunay in
the 2-norm

Yet, it has been observed experimentally that, in the case of finite element meshes
with decent point distribution properties, the Delaunay kernel in the standard
L?-norm and the Delaunay kernel in the L>-norm give similar triangulations
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Baudouin, T. C., Remacle, J. F., Marchandise, E., Henrotte, F., & Geuzaine, C.
(2014). A frontal approach to hex-dominant mesh generation. Advanced Modeling and
Simulation in Engineering Sciences, 1, 1-30
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Gmsh’s third (& final) attempt: pack

Algorithm 1 Frontal point insertion algorithm.

Input: Initial triangulation 7y
cross field f
mesh size field function h(x)
Output: Array of points P
1: Place boundary points in a queue
2: while queue is not empty do
pop the first point p; out of the top of the queue
interpolate f and h at this point
5 for 2N, directions do
6: Compute point p;; by intersecting 7o with a circle
7: Find set of neighboring points Py
8 for py € Py do
9 if [|pi; — psll > ah(pi;) then

10: add p;; in P

11: push p;; in the back of the queue
12: else

13: delete py;

14: end if

15: end for

16: end for

17: end while
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Gmsh’s third (& final) attempt: pack
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Improving pack: quadqgs

[M. Reberol et al. 2021]

Compute a (scaled) cross-field with multilevel diffusion
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Improving pack: quadqgs

A
Il‘\‘\\‘“\\;\
(Y

(v

Build a unstructured quadrilateral mesh with a frontal approach guided by the
scaled cross field
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Improving pack: quadqgs

Pattern-based quadrilateral meshing and cavity remeshing to eliminate
unnecessary irregular vertices while preserving the cross field singularities
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Improving pack: quadqgs
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Improving pack: quadqgs

Cs C3

(a) (b)

(d)

Fig. 6: Growing a cavity around one vertex of index —1 (in pink). Convex corners are in blue and
concave corners are in green. The remeshed cavity (d) has one irregular vertex instead
of eleven.
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Improving pack: quadqgs

The final quad mesh is very similar to the one obtained with the global
parametrization approach and has the same number of irregular vertices
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Improving pack: quadqgs

“Block” model: 533 surfaces,
1584 curves, 261.5k vertices,
261.6k quads

Average SICN quality: 0.87
(minimum: 0.11)

58 sec. (initial unstructured
quad mesh) + 33 sec.
(quasi-structured improvement)
on Intel Core i7 4 cores
Quasi-structured improvement

reduces the number of irregular
from 14.4k to 3.6k
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Ongoing: Pragmatic quad mesher

Boundary curves are discretized first, surfaces are then meshed using the 1D
discretization of the curves.

For a surface to be meshed exclusively with quadrilaterals, the total number
of subdivisions assigned to the curves bounding that surface must be even.

While enforcing an even number of segments on every individual curve is a
sufficient condition, it typically induces substantial changes to the 1D mesh.

Idea — change the 1D mesh as few as possible
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O it Ongoing: Pragmatic quad mesher

e Each face Fj is bounded by a set of curves J; C {1,..., E}. We call s; the
final number of subdivisions that fulfills the following parity conditions:

V7, > 5=0 (mod 2).

’iEJj

e We thus minimize the following weighted-cost function:

m
min Zwi 15,45, subject to parity constraints.
nGZTZ”O =1

Here, 1;,,25,) is an indicator function:
{osstB:} = 0 if S; = Sz

e We define a weight w; > 0 typically chosen so that w; = si
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Ongoing: Pragmatic quad mesher
e Let us first define the face—curve incidence matrix
Ae{0,1}E

The entry A;; is defined as

g - 1 if curve E; lies on the boundary of face F;,
Y10 otherwise.

e A sum of integers is even if and only if the number of odd terms in the sum
is even, we define a set of unknowns m; = s; (mod 2): m; = 1 if s; is odd
and m; = 0 if s; is even.

e Parity conditions
Ar=0 (mod 2).
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Ongoing: Pragmatic quad mesher
Initial solution:

e A cube:
111 10000O0O0O0O0
000011110000
A 1 00010O0O0T1TT1TO0O0
001 00O0O1TO0O0O0T1T1
01 0001O0O0O01O0T1T0
00010O0O0OT1O0T1O0T1
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Ongoing: Pragmatic quad mesher

We perform Gaussian elimination on A over the finite field F5 to get

100001111100
010001O0O01O0T10
A~001000100011
000100O01O01O0T1
000011110000
0000O0OO0OO0OO0OOOO0® 0

e Row 6 is null — for every closed volume, one equation is redundant.
Initial parities given by Gmsh are 7 = (0,0,1,1,0,0,1,0,1,0,1,0).
Heuristic — unknowns are sorted — S; > Ss....

e We can use the "initial” solution to fix (7, ..., m2).
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it Ongoing: Pragmatic quad mesher

We start with m = (7, o, w3, 74, 75,0, 1,0,1,0,1,0).
m = mg + 7 + w8 + w9 + 7o (mod2) — mw =0
~ O =
0 1 0 1 0

my= mg + M9 +m1 (mod2) — me=0
— O~~~
0 1 1

T3 = 77 + T11 + T2 (m0d2) — m3=0
1 1 0

= (0,0,0,0,1,0,1,0,1,0,1,0).
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Initial Solution
© ®
ogll : |
L® ®
L%,‘ ® ' ®
® ® ©
/,J:- ---------- 1\1,\ _________ ,J:. __________ :\Z]\ _____
/'j,\" 3
- ® ®
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Ongoing: Pragmatic quad mesher

Improved solution 7 = 7 + Y7 a, v,

e 7 is the initial solution and the v(¥) form a basis of the null space of A and
o) € {0, 1}

100001111100
01 0001O0O01O0T10O0
A~ 0010001TO0O0O0T1T1
000100O01O0T1O0°1
000011110000
000O0O0OO0OO0OO0OOOO0O

e Do not look for all v, choose a small subset. Here just choose i = 6 and
start with v1) = (vél),vél),v;gl),vil),vél), 1,0,0,0,0,0,0). and thus

v = (1,1,0,0,1,1,0,0,0,0,0,0)
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Ongoing: Pragmatic quad mesher

Patterns:
e CAD models are made of many patches, lots of them of simple topology.

e In Gmsh, we only encoded a few of those, more will come.

8

7
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Ongoing: Pragmatic quad mesher

e Look for faces with {0,...,5} convex corners, no holes, no concave corners.

Apply pattern if all chords are positive

Smooth using enhanced winslow (now works on surfaces, could be taylored
for very anisotropic meshes)

If mesh is bad, restore the unstructured one.

Teod JEL T
R A
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Ongoing: Pragmatic quad mesher
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Ongoing: Pragmatic quad mesher
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Hexahedra
Prisms

Pyramids
Trihedra

Time for 1D mesh

A Statistics

I~ Compute statistics for visible enties only
Memory usage: 471.477Mb

0149115
4.26699

x 5
§lgBlel8lolololols

Ongoing

ité

~
universi

LIEGE

v



Unstructured hex meshing



:$ !,',,!EEE B UCLouvain
Frontal approach

Create a 3D frame/size field
Generate points on surfaces & on volumes using the same approach

Tetrahedralize the points (+ recover features)
Subdivide tetrahedra into hexahedra
Create a all-hex mesh?

gmsh Kolben.stp -clmin .3 -clmax .3 -hybrid -3 -nt 8
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Bounds on the number of tetrahedra:
Ny —MNe +np—npg =1
We have n, = 8§,
Ne = Nje + Npe With 1y, = 12 4+6 = 18
ny = n;r +nyp With nyp =2 =12
dng = 2n; +myy — nyp =21, — 6

All together (H. Edelsbrunner et al, Tetrahedrizing point sets in three dimensions,
Journal of Symbolic Computation 10 (1990) 335-347)

8—nje—18+2n, —6)+12—n; =1 — ny=n;+5
Since there are at most n,;, = (g) — npe = 10 interior edges, we have the bounds
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174 Subdivisions
Pellerin, J., Verhetsel, K., & Remacle, J. F. (2018). There are 174 Subdivisions of the
Hexahedron into Tetrahedra. ACM Transactions on Graphics (TOG), 37(6), 1-9

A triangulation of the 2-sphere can be constructed from the triangulation of a
2-ball by building a cone

The inverse transformation, the removal of one point v of the sphere triangulation
as well as all triangles incident to v, permits to obtain the triangulation of a ball

The 3-sphere is defined as the 3-dimensional boundary of a 4-dimensional ball

There are 1296 triangulations of the 3-sphere with 9 points [ Altshuler et al, The
classification of simplicial 3-spheres with nine vertices into polytopes and
nonpolytopes. Discrete Mathematics 31, 2 (1980), 115-124)]
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Nine triangulations of the 3-ball with eight vertices can be built from each of the
1296 triangulations byremoving one of thevertices v;,7 = 1,...,9 and its link, i.e.

all tetrahedra incident to v;

The triangulation of the boundary of a hexahedron has 8 vertices and 18 edges.
Among these, 12 are fixed and there are 2 possibilities to place the remaining 6
diagonals of the quadrilateral facets. We have then 2° = 64 possible
triangulations. These triangulations can be classified into 7 equivalence classes,
i.e. there are 7 triangulations of the hexahedron boundary up to isomorphism
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& et 174 Subdivisions

The hexahedron has 174 combinatorial triangulations up to isomorphism that do
not contain any boundary tetrahedra

Among those 174 combinatorial triangulations, the 171 triangulations that admit
an oriented matroid have a realization. The other ones cannot be realized
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Fig. 13. The four realizable triangulations with 15 tetrahedra and with
points in convex position. The hexahedra are valid, their Jacobian is strictly
positive.

174 Subdivisions

Table 4. Number of triangulations patterns per number of tetrahedra

counted in the Delaunay triangulations of random point sets.

#vertices 5 6 7 8 9 10 11 12 13 14 15 Total
3000 1 527 13 16 4 0 0 0 0 51
10000 1 5 5 7 13 19 10 2 0 0 0 62
20000 1 557 13 19 15 2 0 0 0 67
100000 1 5 5 7 13 20 24 5 0 0 0 80
500000 1 5 5 7 13 20 28 12 1 0 0 92
1,000,000 1 5 5 7 13 20 30 14 0 0 O 95
2,000000 1 5 5 7 13 20 30 15 4 1 0 101
5000000 1 5 5 7 13 20 30 16 4 1 0 102
10,000,000 1 5 5 7 13 20 31 16 6 1 0 105

Table 3. Number of triangulations patterns per number of tetrahedra

counted in the available input data of [Pellerin et al. 2018].

Model #vert. 5 6 7 8 9 10 11 12 13 14 15 Total
Cube 2715210 0 0 0 0 0 0 9
Fusee 11975 1 557 13 9 4 0 0 0 0 44
CShaft 23245 1 557 1317 6 0 0 0 0 54
Fusee_1 71947 1557 7 1 0 0 0 0 0 26
Caliper 130572 1557 7 1 0 0 0 0 0 26
CShaft2 140985 1557 8 0 1 0 0 0 0 27
Fusee 2 161888 1557 7 1 0 0 0 0 0 26
FT47 b 221,780 1 557 8 2 0 0 0 0 0 28
FT47 370401 1 557 7 2 0 0 0 0 0 27
Fusee 3 501021 1557 & 4 0 0 0 0 0 30
Los1 583561 1557 7 2 0 0 0 0 0 27
Knuckle 3,058481 1 557 8 2 0 0 0 0 0 28

[B UCLouvain
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G et Combining

Pellerin, J., Johnen, A., & Remacle, J. F. (2017). Identifying combinations of
tetrahedra into hexahedra: a vertex based strategy. Procedia engineering, 203, 2-13

1. A set of mesh vertices V' is initially sampled in the domain

2. A tetrahedral mesh 1" is built by connecting V', e.g. using a Delaunay kernel
like

3. A set H of potential hexahedra that can be constructed by combining some
tetrahedra of 7' is created

4. A maximal subset H. C H of compatible hexahedra is determined It has
been shown that this stage can be formally written as a maximal clique
problem

5. The tetrahedra, 1”7, that are not combined into hexahedra are combined into
prisms, pyramids, or remain unchanged in the final hex-dominant mesh
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Combining

a. Triangulation b. Perfect-matching ¢. Best quality quadrangulation

Figure 1: Combining pairs of triangles into quadrilaterals may not lead to the best quadrilateral mesh.

(1) b (2)2 b

Figure 2: Two potential hexahedra that are not identified by existing combination methods. (1) A decomposition with an interior vertex v. (2) A
decomposition into eight tetrahedra. This is a counter example to the claim of [7] that there is no decomposition into more than 7 interior tetrahedra.

[B UCLouvain
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Eight vertices of the tetrahedral mesh T define a potential hexahedron if (1) the
twelve hexahedron edges are edges of 7" and if (2) the six quadrilateral
hexahedron faces can be formed by merging two triangular facets of T’

This starting point is quite general and allows to automatically detect potential
hexahedra without having to define a priori decomposition patterns into
tetrahedra

a b @ b
4]
h h2 ?g
N
>
e q ET w7 f e a Tf [} B B G
3 Ea c e oc
3 2. ‘
a b a b a b a b
(5] (6]

Figure 9: Vertex based search algorithm to build one hexahedron. Starting from one vertex a, the 7 other vertices are added one after another
scarching for vertices that are that are adjacent through edges of the tetrahedral mesh. Tests on the existence of triangulations of faces ensure the
existence of the hexahedron boundary. Tests on the quality of 2D face angles and 3D hexahedron angles help the quick discard of bad hexahedra.

171



< P HEEE . . B UCLouvain
Maximal independent set

In graph theory, an independent set is a set of vertices in a graph, no two of
which are adjacent

Create a graph — nodes at the potential hexes and an edge exist between two
hexes if they share a tet

The optimization problem of finding a maximum independent set is a strongly
NP-hard problem (in 2D, Blossom is polynomial!)

Greedy algorithm: choose the best hex h, remove all hexes that are connected to
h i.e. that share a tet with h, choose the best remaining hex and so on
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Full Hex?

Verhetsel, K., Pellerin, J., & Remacle, J. F. (2019). A 44-element mesh of Schneiders’
pyramid Bounding the difficulty of hex-meshing problems. Computer Aided Design

DG

Fig. 1: Left: Schneiders’pyramid. Right: The octogonal spindle.

i ——

Scaled jacobian

Fig. 2: Comparison of our 44-element mesh of Scheiders’ pyramid (left) with the
smallest known 36-¢lement solution (right). Both admit two planar symmetries.
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Erickson J. (2014). Efficiently hex-meshing things with topology. Discrete &
Computational Geometry 52, 3 (2014), 427-449

Verhetsel, K., Pellerin, J., & Remacle, J. F. (2019). Finding hexahedrizations for small
quadrangulatlons of the sphere. ACM Transactions on Graphics (TOG), 38(4), 1-13

Lk iriof |
TeALa

son [2014]. top) 37 hexahedra to me

rrrrr

Any ball-shaped domain bounded by n quadrangles can be meshed with no more
than 78n hexahedra. This paper gives bounds that are very significantly lowers

the previous upper bound of 5396n
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Conclusions and perspectives

e Overview of meshing with Gmsh:
e Unstructured triangulations
e Surface meshing, parametrizations, high-order meshes
e Optimal meshes
e Unstructured quad and hex meshing
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e Surface meshing, parametrizations, high-order meshes
e Optimal meshes

e Unstructured quad and hex meshing

e Exciting perspectives:

e Improved high-order meshing
e 3D boundary layers
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Conclusions and perspectives

e Overview of meshing with Gmsh:

e Unstructured triangulations

e Surface meshing, parametrizations, high-order meshes
e Optimal meshes

e Unstructured quad and hex meshing

e Exciting perspectives:
e Improved high-order meshing

e 3D boundary layers

e First Gmsh User Meeting: 8-9 July 2026 in Liege!
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sl PS: GmshFEM and GmshDDM

C++ finite element and domain decomposition libraries based on the Gmsh API
[A. Royer et al. 2022]

e Symbolic symbolic high-level description of weak formulations

e General coupled formulations in 1D, 2D, 2D-axi and 3D
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sl PS: GmshFEM and GmshDDM

C++ finite element and domain decomposition libraries based on the Gmsh API
[A. Royer et al. 2022]

e Symbolic symbolic high-level description of weak formulations
General coupled formulations in 1D, 2D, 2D-axi and 3D

Arbitrarily high-order Lagrange and hierarchical basis functions
Scalar and vector fields (L2, H1, H(curl)) on hybrid, curved meshes

Real and complex arithmetic, single or double precision
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PS: GmshFEM and GmshDDM

C++ finite element and domain decomposition libraries based on the Gmsh API
[A. Royer et al. 2022]

e Symbolic symbolic high-level description of weak formulations
General coupled formulations in 1D, 2D, 2D-axi and 3D

Arbitrarily high-order Lagrange and hierarchical basis functions
Scalar and vector fields (L2, H1, H(curl)) on hybrid, curved meshes

Real and complex arithmetic, single or double precision

Parallelization and linear algebra backends:

e GmshFEM multi-threaded using OpenMP, linear algebra using Eigen
and PETSc, eigensolver using SLEPc FEM

-

e GmshDDM: distributed memory parallelization using MPI, iterative
Krylov solver using PETSc (incl. HPDDM)

>

DDM
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sl PS: GmshFEM and GmshDDM

// Domains
Domain omega("omega"), gammaScat("scat"), gammaExt("ext");

// Finite element field

Field<Scalar, form::Form0> u("u", omega,
functionSpaceH1::HierarchicalH1l,
6); // polynomial degree 6

// Dirichlet constraint

complex<double> im = complex<double>(0., 1.);

double k = 50;

Function<complex<double>, Degree::Degree0> ulnc =
exp<complex<double>>(im * k * z<complex<double>>());

u.addConstraint (gammaScat, -ulnc);

// Weak formulation
Formulation<Scalar> f("helmholtz");

const string g = "Gaussl2";

f.integral( grad (dof (u)), grad(tf(u)), omega, g);
f.integral(- k * k * dof(u) , tf(u) , omega, g);
f.integral (- im * k * dof (u) , tf (u) , gammaExt, g);
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Acoustic noise from a turbofan engine intake (1 billion dofs, 1024 partitions)
[P. Marchner et al. 2025]
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et PS: GmshDDM & GmshDG on GPU

e GmshDDM is being ported to GPU to speed up the iterative process
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et PS: GmshDDM & GmshDG on GPU

e GmshDDM is being ported to GPU to speed up the iterative process

e We have also added multi-GPU support to our time-domain Discontinuous
Garlerkin code GmshDG for Maxwell:

Lucia - 900 Millions de DoFs LUMI-G - 2.5 Milliards de DoFs
250 / 100% 1400 100%
2 200 8% , BT 1200 / 80%
5 @ 5 1000 °©
a ® 2
<} 150 60% o @ 800 60% E
€ 2 € 2
2 100 40% B g 600 0% T
g o
- £ 2 a0 =
& 50 20% g 20% ™
200
0 0% 0 0%
4 8 16 32 64 16 32 64 128 256 512 1024
Nombre de GPU Nombre de GPU
—e—Rendement Efficacité parallele —e—Rendement Efficacité paralléle
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Rendement (GDoFs/s)

PS: GmshDDM & GmshDG on GPU

Lucia Weak Scaling
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