université

:; LIEG.E W UCLouvain

Gmsh

C. Geuzaine and J.-F. Remacle
Université de Liege and Université catholique de Louvain

August 31, 2019

I APPRECTIATE YOUR
INPUT. T COULDNT HAVE
FAILED WITHOUT YOU.

TEAM—
WORK!

I ADDED ALL OF THE

PRODUCT FEATURES

THAT EACH OF YOU
DEMANDED.

NOW OUR PRODUCT
IS A WORTHLESS
HODGEPODGE OF
COMPLEXITY.

)

22513 ©2013 Scott Adams, INC. /Dist. by Usiversal Uchck

Dilbert.com DilbertCartoonist@gmail.com

% * LIEGE
4.' université

Some background

| am a professor at the University of Liege in Belgium, where |
lead a team of about 15 people in the Montefiore Institute
(EECS Dept.), at the intersection of applied math, scientific
computing and engineering physics

Our research interests include modeling, analysis, algorithm
development, and simulation for problems arising in various
areas of engineering and science

Current applications: low- and high-frequency
electromagnetics, geophysics, biomedical problems

We write quite a lot of codes, some released as open source
software: http://gmsh.info, http://getdp.info,
http://onelab.info

http://gmsh.info/
http://getdp.info/
http://onelab.info/

B UCLouvain

Some background

| am a professor at the Université catholique de Louvain in
Belgium, where | lead a team of a dozen researchers in the
Institute of Mechanics, Materials and Civil Engineering

We work mainly on mesh generation and high-order methods
for PDEs

Our current main research topic is hex meshing, both
unstructured and structured

| have been co-operating with Christophe for more than 20
years, a fruitful collaboration that has led to the creation of
Gmsh

LIEGE
3; université

What is Gmsh?

 Gmsh (http://gmsh.info) is an open source 3D finite element
mesh generator with a built-in CAD engine and post-processor '

* Includes a graphical user interface (GUI) and can drive any
simulation code through ONELAB

 Today, Gmsh represents about 500k lines of C++ code

still same 2 core developers; about 100 with >= 1 commit
about 1,000 people on mailing lists
about 8,000 downloads per month (75% Windows)

about 500 citations per year —the Gmsh paper is cited about
3,700 times

Gmsh has probably become one of the most popular (open
source) finite element mesh generators?

B UCLouvain

http://gmsh.info/

Wednesday, 28 August, 2019 13:39:12

~ 20 years of Gmsh development in 1 minute

A warm thank you to all the contributors!

http://gmsh.info/doc/gource_faster.mp4
http://gmsh.info/CREDITS.txt

B UCLouvain

A little bit of history

Gmsh was started in 1996, as a side project

1998:
2003:
2006:
2009:
2012:
2013:
2015:
2017:
2018:
2019:

First public release

Open Sourced under GNU GPL

OpenCASCADE integration (Gmsh 2)

IJINME paper and switch to CMake

Curvilinear meshing and quad meshing

Homology and ONELAB solver interface

Parallel 1D and 2D meshing (coarse-grained)

Boolean operations and switch to Git (Gmsh 3)

C++, C, Python and Julia APl (Gmsh 4)

Parallel 3D meshing (fine-grained), robust STL remeshing

& ; uLn!EgE B UCLouvain

Strategic choices

* Design goals: fast, light and user-friendly

* Written in simple C++

e GUIs: FLTK (desktop), UIKit (iOS), Android, web

* OpenGL graphics

* Highly portable (OSes & compilers)

e Easy to distribute & install: zero dependencies on installation
 Handling of numerous third party libraries

* Build system based on CMake — everything is optional

* Some libs integrated and redistributed directly in gmsh/contrib
(BAMG, Metis, Concorde, ...)

 Funding
* Hobby until 2006, then industry, Wallonia, Belgium & EU

¢ LIEGE B UCLouvain

Strategic choices

e Community infrastructure

e Our own (using GitLab) to enable public/private parts
(https://gitlab.onelab.info/gmsh/gmsh)

* Continuous integration and delivery (Cl/CD) of Gmsh app and
Gmsh SDK on Windows, Linux and macOS

e Two mailing lists and a web site (http://gmsh.info) with
documentation, tutorials, etc.

* Scientific aspects of algorithms detailed in journal papers
* Licensing

e Gmsh is distributed under the GNU General Public License v2 or
later, with exceptions to allow for easier linking with external
libraries

 We double-license to enable embedding in commercial codes

https://gitlab.onelab.info/gmsh/gmsh
http://gmsh.info)/

& ; uLn!EgE B UCLouvain

Basic concepts

e Gmsh is based around four modules: Geometry, Mesh, Solver
and Post-processing

* Gmsh can be used at 3 levels
* Through the GUI
* Through the dedicated “.geo” language
 Through the C++, C, Python and Julia API
* Main characteristics

* All algorithms are written in terms of abstract CAD entities, using
a Boundary REPresentation (BREP) approach

 Gmsh never translates from one CAD format to another; it
directly accesses each CAD kernel APl (OpenCASCADE, Parasolid,
Built-in, ...)

10

université

:g LIEGE Il UCLouvain
Basic concepts

The goal is to deal with very different underlying data
representations in a transparent manner

L/
RO
A"‘

ke o)

we ARG oy -
! ‘M %
X AR

4
wied oy

--g!f\“ N

11

LIEGE
3; université

B UCLouvain

Geometry module

Under the hood, 4 types of model entities are defined:

1.

2.
3.
4

Model points G? that are topological entities of dimension 0
Model curves G that are topological entities of dimension 1
Model surfaces G+ that are topological entities of dimension 2
Model volumes G? that are topological entities of dimension 3

12

& ; uLnI|\/Eeer|tEe B UCLouvain

Geometry module

 Model entities are topological entities, i.e., they only deal with
adjacencies in the model; a bi-directional data structure
represents the graph of adjacencies

O _. 1 .2 _. 3
) =Gl =G =G

 Any model is able to build its list of adjacencies of any
dimension using local operations

 The BRep is extended with non-manifold features: adjacent
entities, and embedded (internal) entities

 Model entities can be either CAD entities (e.g. from the built-
in or OpenCASCADE kernel) or discrete entities (defined by a
mesh, e.g. STL)

13

LIEGE

4.' université B UCLouvain

Geometry module

The geometry of a CAD model entity depends on the solid
modeler kernel for its underlying representation. Solid modelers
usually provide a parametrization of the shapes, i.e., a mapping:

peR'— xR
1. The geometry of a model point GY is simply its 3-D location
L = (:U’Ila Yi, Z’L)
2. The geometry of a model curve G is its underlying curve C;
with its parametrization p(t) € C;, t € [t1, 2]

3. The geometry of a model surface G?7 is its underlying surface S;
with its parametrization p(u,v) € S;

4. The geometry associated to a model volume is R’

14

université

j»’ LIEGE B UCLouvain

Geometry module

Point p located on a curve C thatis itself embedded in a surface S

15

’ E .
b llj-nl“EgE Il UCLouvain

Geometry module

Operations on CAD model entities are performed directly within
their respective CAD kernels (e.g. built-in or OpenCASCADE):

 Gmsh does not translate across CAD formats (there is no
internal common geometrical representation)

 Rather, Gmsh directly accesses the native representation
using each CAD kernel’s own API

¢ LIEGE

université

Geometry module

Discrete model entities are defined by a mesh (e.g. STL):

 They can be equipped with a geometry through a
reparametrization procedure

 This reparametrization is used for remeshing

Il UCLouvain

17

B UCLouvain

Mesh module

Gmsh implements several meshing algorithms with specific
characteristics

e 1D, 2D and 3D

e Structured, unstructured and hybrid

* |sotropic and anisotropic

e Straight-sided and curved

* From standard CAD data or from STL through reparametrization

Built-in interfaces to external mesh generators (BAMG,
MMG3D, Netgen)

18

¥

LIEGE

université

Mesh module

Typical CAD kernel idiosyncrasies: seam edges and degenerated edges

Il UCLouvain

19

LIEGE
3; université

B UCLouvain

Mesh module

Mesh data is made of elements (points, lines, triangles,
guadrangles, tetrahedra, hexahedra, ...) defined by an ordered
list of their nodes

Elements and nodes are stored (classified) in the model entity
they discretize:

* A model point will thus contain a mesh element of type point, as
well as a mesh node

A model curve will contain line elements as well as its interior
nodes, while its boundary nodes will be stored in the bounding
model points

* A model surface will contain triangular and/or quadrangular
elements and all the nodes not classified on its boundary or on its
embedded entities (curves and points)

20

université

:g LIEGE B UCLouvain
Mesh module

A model volume will contain tetrahedra, hexahedra, etc. and all
the nodes not classified on its boundary or on its embedded
entities (surfaces, curves and points)

This mesh data structure allows
to easily and efficiently handle
the creation, modification and
destruction of conformal finite
element meshes

21

:1: LIEGE

université

Il UCLouvain

Solver module

Gmsh implements a ONELAB (http://onelab.info) server to
pilot external solvers, called “clients”

Example client: GetDP finite element solver (http://getdp.info)

« The ONELAB interface (= | / [N
allows to call such =0l -
clients and have them . %=- |
share parameters and |
modeling information |

* Parameters are e
directly controllable =
from the GUI & ——

22

http://onelab.info/
http://getdp.info/

LIEGE
<.' université

B UCLouvain

Solver module

The implementation is based on a client-server model, with a
server-side database and local or remote clients
communicating in-memory or through TCP/IP sockets

e Contrary to most solver interfaces, the ONELAB server has no a

priori knowledge about any specifics (input file format, syntax, ...)
of the clients

* This is made possible by having any simulation preceded by an
analysis phase, during which the clients are asked to upload their
parameter set to the server

* The issues of completeness and consistency of the parameter
sets are completely dealt with on the client side: the role of
ONELAB is limited to data centralization, modification and re-
dispatching

23

B UCLouvain

Post-processing module

Post-processing data is made of views

A view stores both display options and data (unless the view is
an alias of another view)

View data can contain several steps (e.g. to store time series)
and can be either linked to one or more models (mesh-
based data, as stored in MSH or MED files) or independent
from any model (list-based data, as stored in parsed POS files)

Data is interpolated through arbitrary polynomial
interpolation schemes; automatic mesh refinement is used for
adaptive visualization of high-order views

Various plugins exist to modify and create views

24

v

LIEGE

université

Il UCLouvain

Post-processing module

Cuts, iso-curves and vectors
Elevation maps
Streamlines

Adaptive high-order
visualization

25

4.; uLnllvEerGﬂtEe B UCLouvain

Recent developments

* Constructive Solid Geometry

* Application Programming Interface (API)
e Parallel meshing

 Robust STL remeshing

26

v HEEIE ¥ UCLouvain
Constructive Solid Geometry

~ ~
9 " ©
/ o\

f Qs !v
S

http://en.wikipedia.org/wiki/Constructive_solid _geometry

27

http://en.wikipedia.org/wiki/Constructive_solid_geometry

) LIEGE

Constructive Solid Geometry

i s Use OpenCASCADE CAD kernel
SetFactory("OpenCASCADE");

R = DefineNumber[1.4 , Min 0.1, Max 2, Step 0.01,
Name "Parameters/Box dimension"];
Rs = DefineNumber[R*.7 , Min 0.1, Max 2, Step 0.01,
Name "Parameters/Cylinder radius"];
DefineNumber[R*1.25, Min 0.1, Max 2, Step 0.01,
Name "Parameters/Sphere radius"];

Rt

Box(1) = {-R,-R,-R, 2*R,2*R,2*R};
Sphere(2) = {0,0,0, Rt};

Booleéﬁ#htersection(B) = { Volume{l}; Delete; }{ Volume{2}; Delete; };

Cylinger(4) = {—Z;H{®,®, 4*R,0,0, Rs}; !a:\%i

Cylinder(5) = ,-2*R,0, 0,4*R,0, Rs};
Cylirder(6) = {0,0,-2*R, 0,0,4*R, Rs};

BooteanUpton(7) = { Volume{4}; Delete; }{ Volume{5,06%; Delete; };
BooleapDifference(8) = { Volume{3}; Delete; }{ Volume 1‘E; elete; };

£

o Delete object and tool
Explicit tags

B UCLouvain

28

d université

:g LIEGE ¥ UCLouvain
Constructive Solid Geometry

0 Gmsh - boolean.geo

|1.4 :| € | &2 | Block dimension
|0.98 :| € | &2 | Cylinder radius
|1.75 :| € | k2| Sphere radius

AP
= e

[
X
i
i

M

Ay SavcAl

~

] o]

S0XYZQC 1:1S 14 b [Donemeshing 2D (1.41744 s)

gmsh/demos/boolean/boolean.geo

29

% * LIEGE

université

B UCLouvain

Constructive Solid Geometry

SetFactory("0OpenCASCADE");

DefineConstant[

z = {16, Name "Parameters/z position of box"}

sph = {0, Choices{0,1}, Name "Parameters/Add sphere?"}
1;

a() = ShapeFromFile("component8.step"); ﬂiﬁumww Import shapes from STEP or BREP
b() = 2;
Box(b(®)) = {0,156,z, 10,170,z+10};

If(sph) BooleanFragments intersects everything

b += 3; >

Sphere(b(1)) = {®,15®,2;”59}¢'“”
EndIf ﬂ g

r() = BooleanFragments{ Volume{a()}; Delete; }{ Volume{b(D}; Delete; };
Save,,.'merged.brep";

Physié&% Volume("Combined volume", 1) = {r()};
Physica xé:iface("Combined boundary", 2) = CombinedBoundary{ Volume{r()}; }

Implicit tags
30

W LIEGE

[N
w Modules
) Geometry
» Mesh
) Solver
» Gmsh
w Parameters
¥ Add sphere?

|16 :IC‘lt:'zposiﬁonofbbck

a0

Constructive Solid Geometry

Gmsh - import.geo

(-18.4752,150,-20)

E0XYZQ 1:118 1 4 b Done meshing 2D (0.499587 s)

gmsh/demos/boolean/import.geo

' UCLouvain

(18.4752,188.5,26)

31

& ; uLn!EgE B UCLouvain

Constructive Solid Geometry

* All existing .geo commands are conserved

* New or modified .geo commands:

e Shapes (with explicit numbering): Circle, Ellipse, Wire,
Surface, Sphere, Box, Torus, Rectangle, Disk, Cylinder,
Cone, Wedge, ThickSolid, ThruSections, Ruled ThruSections

e Operations (implicit numbering): ThruSections, Ruled
ThruSections, Fillet, Extrude

* Boolean operations (explicit or implicit numbering): BooleanUnion,
BooleanIntersection, BooleanDifference, BooleanFragments

* Other: ShapeFromFile, Recursive Delete

32

& ; uLn!EgE B UCLouvain

Application Programming Interface

Gmsh 4 introduces a new stable Application Programming

Interface (API) for C++, C, Python and Julia, with the following
design goals:

 Allow to do everything that can be done in .geo files
e ...and then much more!
 Berobust, in particular to wrong input data (i.e. "never crash")
* Be efficient; but still allow to do simple things, simply
 Be maintainable over the long run

33

& ; uLn!EgE B UCLouvain

Application Programming Interface

To achieve these goals the Gmsh API
* is purely functional

* only uses basic types from the target language (C++, C, Python
or Julia)

* isautomatically generated from a master API description file
e s fully documented

34

;; uLn!\:EegE B UCLouvain
Application Programming Interface

Same boolean example as before, but using the Python API:

import gmsh

gmsh.initialize()
gmsh.model .add("boolean")

R=1.4; Rs = R*.7; Rt = R¥1.25

gmsh.model .occ.addBox(-R,-R,-R, 2*R,2*R,2*R, 1)
gmsh.model .occ.addSphere(0,0,0,Rt, 2)
gmsh.model.occ.intersect([(3, 1)], [(3, 2)], 3)
gmsh.model.occ.addCylinder(-2*R,0,0, 4*R,0,0, Rs, 4)
gmsh.model.occ.addCylinder(0,-2*R,0, 0,4*R,0, Rs, 5)
gmsh.model.occ.addCylinder(0,0,-2*R, 0,0,4*R, Rs, 6)
gmsh.model .occ.fuse([(3, 4), (3, 5)], [(3, 6)], 7)
gmsh.model .occ.cut([(3, 3)]1, [(3, 701, 8)

gmsh.model .occ.synchronize()
gsmh.model .mesh.generate(3)
gmsh.fltk.run(Q)

gmsh.finalize()

smsh/demos/api/boolean.py

35

W LIEGE

Application Programming Interface

Or using the C++ API:

#include <gmsh.h>

int main(int argc, char **argv)

{

e

Tt

gmsh::initialize(argc, argv);

gmsh: :model: :add("boolean™);

double R = 1.4, Rs = R*.7, Rt = R*1.25;

std::vector<std: :pair<int, int> > ov;
std::vector<std: :vector<std: :pair<int, int> > > ovv;

gmsh: :model:
gmsh: :model:
gmsh: :model:
gmsh: :model:
gmsh: :model:
gmsh: :model:
gmsh: :model:
gmsh: :model:
gmsh: :model:
gmsh:

gmsh:

gmsh:

return 0;

.0CC:
.0CC:
.0CC:
.0CC:
.0CC:
.0CC:
.0CC:
.0CC:

.0CC:

:addBox(-R,-R,-R, 2*R,2*R,2*R, 1);
:addSphere(0,0,0,Rt, 2);

:intersect({{3, 1}}, {{3, 2}}, ov, ovv, 3);
:addCylinder(-2*R,0,0, 4*R,0,0, Rs, 4);
:addCylinder(@,-2*R,0, 0,4*R,0, Rs, 5);
:addCylinder(0,0,-2*R, 0,0,4*R, Rs, ©6);
:fuse({{3, 4}, {3, 5}}, {{3, 6}}, ov, ovwv, 7);
reut({{3, 31}, {{3, 71}, ov, owv, 8);

:synchronize();
:model: :mesh: :generate(3);

:fltk::runQ);
:finalize(Q);

gmsh/demos/api/boolean.cpp

B UCLouvain

36

4.' université B UCLouvain

Application Programming Interface

In addition to CAD creation and meshing, the APl can be used to
 Access mesh data (getNodes, getElements)

 Generate interpolation (getBasisFunctions) and integration
(getJacobians) data to build Finite Element and related solvers
(see e.g. demos/api/poisson.py)

* (Create post-processing views
* Run the graphical user-interface

* Build custom graphical user-interfaces, e.g. for domain-specific

codes (see demos/api/custom gui.py) or co-post-processing
via ONELAB

37

https://gitlab.onelab.info/gmsh/gmsh/blob/master/demos/api/poisson.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/demos/api/custom_gui.py

:ﬁ uLnl“:EerGgE B UCLouvain
Application Programming Interface

In order to make this APl easy to use, we publish a binary
Software Development Toolkit (SDK):

e Continuously delivered (for each commit in master), like the
Gmsh app

* Contains the dynamic Gmsh library together with the
corresponding C++/C header files, and Python and Julia
modules

Download

Gmsh Is distributed under the terms of the GNU General Public License (GPL):

« Current stable release (version 4.3.0, 19 April 2019):
o Download Gmsh for Windows 64-bit, Windows 32-bit, Linux 64-bit, Linux 32-bit or MacOS
o Download the source code
,,,»-?' o Download the Software Development Kit (SDK) for Windows 64-bit, Windows 32-bit, Linux 64-bit, Linux 32-bit or

MacOS
Make sure lo read the tulorials before sending questions or bug reports. See the Ce+, C, Python and Jukia examples on how fo
use the Gmsh API to develop your own applications using the SDK.
e Development version:

o Download the latest automatic Gmsh snapshot for Windows 64-bit, Windows 32-bit, Linux 64-bit, Linux 32-bit or MacOS
o Download the latest automatic source code snapshot
o Download the latest automatic SDK snapshot for Windows 64-bit, Windows 32-bit, Linux 64-bit, Linux 32-bit or MacOS

o Access the Git repository: 'git clese httpa://gitlab.onelab. info/guah/guah.git
2
¢ All versions: binaries and sources PM 38

& ; uLnI|\/Eeer|tEe B UCLouvain

Parallel Meshing

Most meshing algorithms are now multi-threaded using OpenMP:

e 1D and 2D algorithms are multithreaded using coarse-grained
approach, i.e. several curves/surfaces are meshed
concurrently

 The new 3D Delaunay-based algorithm is multi-threaded using
a fine-grained approach. It currently lacks several features
(embedded entities, hybrid meshes, ...), which will eventually
be supported

You need to recompile Gmsh with -DENABLE_OPENMP=1 to enable
this; then e.g. gmsh file.geo -3 -nt 8 -algo hxt

39

< F

&

LIEGE

université

Il UCLouvain

Parallel Meshing

—e— Ours /,-/)
10 | - -~ - Geogram 1.5.4 ‘,./::/ =
|- = - CGAL4.12 Pt]
i _/-’Q:"/ |
7 /':,"/
g L /,/~::"' & # vertices 10* 100 10° 107
= - /.,,’J:"/ 2 Ours 0.032 0.13 0.85 740
- LLtE 1 Geogram ~ 0.041 0.19 173 17.11
0.1} Y = CGAL 0.037 024 220 23.37
- Pr .
= \ \ i
10* 10° 106 107
Number of points (random uniform distribution)
(a) 4-core Intel® Core™ i7-6700HQ CPU.
100 || T O paillllln
F| - -+~ - Geogram 1.5.4 /," = e
| - = - CGAL 4.12 & T %
u /»’/"."»]
E 10 — /x//‘/.‘./‘ =
2 B et g #vertices 10* 10> 10° 107 108
= A 1 Ours 0.11 043 1.17 448 2895
s /.”,v"' = Geogram 0.10 0.54 458 43.70 /
- oms : . CGAL 027 048 244 20.15 /
0.1 cadl | \ | |
10* 10° 10° 107 108

Number of points (random uniform distribution)

(b) 64-core Intel® Xeon Phi™ 7210 CPU. 40

v

LIEGE

université

r
-

A3l

LS

Parallel Meshing

NN \\\V\\

Il UCLouvain

Truck tire
Timings (s)
threads # tetrahedra BR Refine Total
1 123640429 759 2597 364.7
2 123593913 74.5 166.8 267.1
4 123625696 74.2 107.4 203.6
8 123452318 74.2 95.5 190.0
AMD® EPYC 64 core
Aircraft
Timings (s)
threads # tetrahedra BR Refine Total
1 672209630 45.2 1348.5 1418.3
2 671432038 42.1 11489 1211.5
8 665826109 39.6 714.8 774.8
64 664 587093 38.7 322.3 380.9
127 663921974 38.1 255.0 313.3

AMD® EPYC 64 core

41

¢ LIEGE :
m université ' UCLouvain
Parallel Meshing
100 thin fibers
Timings (s)
threads # tetrahedra BR Refine Total
1 325611841 3.1 492.1 497.2
2 325786170 2.9 3297 3343
4 325691796 2.8 2295 2339
8 325211989 2.7 154.6 158.7
16 324897471 2.8 96.8 100.9
32 325221244 2.7 71.7 75.8
64 324701883 2.8 55.8 60.1
127 324190447 2.9 47.6 52.0
500 thin fibers
Timings (s)
threads # tetrahedra BR Refine Total
1 723208595 189 1205.8 12344
2 723098577 16.0 780.3 804.8
4 722664991 86.6 567.1 659.8
8 722329174 15.8 349.1 370.1
16 723093143 15.6 216.2 236.5
32 722013476 15.6 149.7 169.8
64 721572235 159 119.7 140.4
127 721591846 159 114.2 135.2

AMD® EPYC 64 core

42

u H\:EeglltEe I UCLouvain
Robust STL remeshing based on parametrizations

Batman STL mesh

43

LIEGE

université

Robust STL remeshing based on parametrizations

Automatic atlas creation: each patch is provably parametrizable by
solving a linear PDE, using mean value coordinates

Il UCLouvain

44

Il UCLouvain

té

universi

LIEGE

Robust STL remeshing based on parametrizations

Frav,
arae
DR Tavy

Remeshing

45

LIEGE

université

Robust STL remeshing based on parametrizations

Automatic atlas creation, this time with feature edge detection

Il UCLouvain

46

LIEGE

université

Ro

e
ey 'Q‘::;if:#»
XA

ust STL remeshing based on parametrizations

-t
e

Y A N e Vi
e

Remeshing with feature edge detection

Il UCLouvain

47

< F

&

LIEGE

université

Robust STL remeshing based on parametrizations

CT scan of an artery: 101 patches created, most because of the large
aspect ratio

B UCLouvain

48

¢ LIEGE

université ' UCLouvain

Robust STL remeshing based on parametrizations

Kl
2
9
2
2
S

VAV

Remeshing of a skull: 715 patches created for reparametrization; mesh

adapted to curvature
49

S - . °
;» uLnllvEegltEe B UCLouvain

Robust STL remeshing based on parametrizations

Remeshing of an X-ray tomography image of a silicon carbide foam by P. Duru,
F. Muller and L. Selle (IMFT, ERC Advanced Grant SCIROCCO): 1,802 patches
created for reparametrization
50

LIEGE
<.' université

Conclusions and perspectives

Overview of Gmsh and recent developments:

* Constructive Solid Geometry

* Application Programming Interface

* New parallel algorithms

* Robust STL remeshing

Many exciting developments in the pipeline:

* Improved high-order remeshing

* Hex-dominant meshes

* (Semi-)automatic bloc-structured decompositions
* Boundary layers

B UCLouvain

51

a # LIEGE

université

Post-Scriptum

To download Gmsh: http://gmsh.info

For references, see http://gmsh.info/#References

For fun, go to the
e Google Play Store (if you are on Android)

* Apple AppStore (if you are on iOS)

and download the ONELAB app: it contains a full-
featured version of Gmsh + the finite element solver

GetDP

... SO you can impress your friends by solving finite
element models on your smartphone!

OOOOO

B UCLouvain

52

http://gmsh.info/
https://play.google.com/store/apps/details?id=org.geuz.onelab
https://itunes.apple.com/us/app/onelab/id845930897
http://gmsh.info/

