
Gmsh
C. Geuzaine and J.-F. Remacle

Université de Liège and Université catholique de Louvain

August 31, 2019

2

Some background

• I am a professor at the University of Liège in Belgium, where I
lead a team of about 15 people in the Montefiore Institute
(EECS Dept.), at the intersection of applied math, scientific
computing and engineering physics

• Our research interests include modeling, analysis, algorithm
development, and simulation for problems arising in various
areas of engineering and science

• Current applications: low- and high-frequency
electromagnetics, geophysics, biomedical problems

• We write quite a lot of codes, some released as open source
software: http://gmsh.info, http://getdp.info,
http://onelab.info

about half a

http://gmsh.info/
http://getdp.info/
http://onelab.info/

3

Some background

• I am a professor at the Université catholique de Louvain in
Belgium, where I lead a team of a dozen researchers in the
Institute of Mechanics, Materials and Civil Engineering

• We work mainly on mesh generation and high-order methods
for PDEs

• Our current main research topic is hex meshing, both
unstructured and structured

• I have been co-operating with Christophe for more than 20
years, a fruitful collaboration that has led to the creation of
Gmsh

about half a

4

What is Gmsh?

• Gmsh (http://gmsh.info) is an open source 3D finite element
mesh generator with a built-in CAD engine and post-processor

• Includes a graphical user interface (GUI) and can drive any
simulation code through ONELAB

• Today, Gmsh represents about 500k lines of C++ code
• still same 2 core developers; about 100 with >= 1 commit

• about 1,000 people on mailing lists

• about 8,000 downloads per month (75% Windows)

• about 500 citations per year – the Gmsh paper is cited about
3,700 times

• Gmsh has probably become one of the most popular (open
source) finite element mesh generators?

http://gmsh.info/

6

∼ 20 years of Gmsh development in 1 minute
A warm thank you to all the contributors!

http://gmsh.info/doc/gource_faster.mp4
http://gmsh.info/CREDITS.txt

7

A little bit of history

• Gmsh was started in 1996, as a side project
• 1998: First public release
• 2003: Open Sourced under GNU GPL
• 2006: OpenCASCADE integration (Gmsh 2)
• 2009: IJNME paper and switch to CMake
• 2012: Curvilinear meshing and quad meshing
• 2013: Homology and ONELAB solver interface
• 2015: Parallel 1D and 2D meshing (coarse-grained)
• 2017: Boolean operations and switch to Git (Gmsh 3)
• 2018: C++, C, Python and Julia API (Gmsh 4)
• 2019: Parallel 3D meshing (fine-grained), robust STL remeshing

8

Strategic choices

• Design goals: fast, light and user-friendly
• Written in simple C++

• GUIs: FLTK (desktop), UIKit (iOS), Android, web

• OpenGL graphics

• Highly portable (OSes & compilers)

• Easy to distribute & install: zero dependencies on installation

• Handling of numerous third party libraries
• Build system based on CMake – everything is optional

• Some libs integrated and redistributed directly in gmsh/contrib
(BAMG, Metis, Concorde, …)

• Funding
• Hobby until 2006, then industry, Wallonia, Belgium & EU

9

Strategic choices
• Community infrastructure

• Our own (using GitLab) to enable public/private parts

(https://gitlab.onelab.info/gmsh/gmsh)

• Continuous integration and delivery (CI/CD) of Gmsh app and

Gmsh SDK on Windows, Linux and macOS

• Two mailing lists and a web site (http://gmsh.info) with

documentation, tutorials, etc.

• Scientific aspects of algorithms detailed in journal papers

• Licensing

• Gmsh is distributed under the GNU General Public License v2 or

later, with exceptions to allow for easier linking with external

libraries

• We double-license to enable embedding in commercial codes

https://gitlab.onelab.info/gmsh/gmsh
http://gmsh.info)/

10

Basic concepts

• Gmsh is based around four modules: Geometry, Mesh, Solver
and Post-processing

• Gmsh can be used at 3 levels
• Through the GUI
• Through the dedicated “.geo” language
• Through the C++, C, Python and Julia API

• Main characteristics
• All algorithms are written in terms of abstract CAD entities, using

a Boundary REPresentation (BREP) approach
• Gmsh never translates from one CAD format to another; it

directly accesses each CAD kernel API (OpenCASCADE, Parasolid,
Built-in, …)

11

Basic concepts
The goal is to deal with very different underlying data

representations in a transparent manner

6

12 E. MARCHANDISE

a) b) c)

Figure 7. Remeshing algorithm for a skull geometry. a) Initial triangulation (G = 2, NB = 0) that is cut
into di↵erent mesh partitions of zero genus, b) Remesh the lines at the interfaces between partitions,
c) Compute a harmonic map for every partition and remesh the partition in the parametric space

(u(x) coordinates visible for one partition).

cylinder). In case this condition is not satisfied, split the mesh into two parts with the
multiscale laplacian partitioner defined in the previous section.

3. Compute an armonic mapping for every mesh partition.

4. Remesh the lines that are the boundaries of the triangulation and the interfaces between
the mesh partitions (see the interfaces between colored patches in 7a that are marked
with thick white lines in Fig.7b). Those lines are defined as model edges and divided into

N parts as follows: N =
R L
0 ||x,t|| /�dt, where � is the prescribed mesh size field. The

remeshed lines are embedded in the final mesh (see Fig. 7c).

5. Use standard surface meshers to remesh every partition in the parametric space and map
the triangulation back to the original surface.

6. If a volume mesh is needed, generate a volume mesh from the new surface mesh using
standard volume meshing techniques (frontal and Delaunay meshers are available in
Gmsh).

The automatic procedure is implemented within the open source mesh generator Gmsh [2].
Examples of how to use it can be found on the Gmsh’s wiki: https://geuz.org/trac/gmsh¶.

¶Access the wiki with username gmsh and password gmsh

Copyright c� 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–6
Prepared using nmeauth.cls

12 E. MARCHANDISE

Geometry STL Surface mesh Volume mesh Time (s) Time (s) Time (s)
�̄T # �̄T # �min

⌧ �̄⌧ C field 2D mesh 3D mesh
Aorta 4 103 0.73 12 103 0.97 58 103 0.21 0.69 0.08 0.78 2.26
Aneurysm 38 103 0.94 27 103 0.97 104 103 0.19 0.65 3.30 3.60 4.20
Airways 493 103 0.87 168 103 0.93 587 103 0.06 0.68 410.10 25.90 35.11

Table I. Mean and minimum quality (�̄T , �̄⌧ , and �min
⌧), number of mesh elements # and timings (in s) for

the generation of isotropic tetrahedral meshes starting from tubular geometries.

Figure 8 shows the generated isotropic tetrahedral mesh for the lung based on the centerline field.
As can be seen, the mesh size is a function of the vessel radius, reducing therefore considerably the
total number of mesh elements compared with a uniform tetrahedral mesh.

(a) (b)

Figure 8. Isotropic tetrahedral mesh of the airways created using the centerline operators. The colors
correspond to the different mesh patches that have been created by the cut operator.

3.2. Mixed hexahedral/tetrahedral/pyramidal computational meshes

We first define a quality measure for quadrilateral elements. Consider a quadrilateral element q
and its the four internal angles ↵k, k = 1, 2, 3, 4. We define the quality ⌘q as:

⌘q = max

✓
1� 2

⇡
max

k

⇣���
⇡

2
� ↵k

���
⌘
, 0

◆
. (14)

This quality measure is ⌘ = 1 if the element is a perfect quadrilateral and is ⌘ = 0 if one of those
angles is either 0 or � ⇡. For the hexahedral mesh elements, we define the equi-skew angle mesh
quality ⇣H as a normalized measure of skewness ranging from ⇣H = 1 (best) to ⇣H = 0 (worst) that
depends on the angle formed between the faces’s edges of each cell in the mesh (⇣H = 1 corresponds
to a perfectly equiangular hexahedra) [7]:

⇣H = 1�max

✓max � 90

90
,
90� ✓min

90

�
, (15)

where ✓max and ✓min are the largest and smallest angle in the hexahedra.

Copyright c� 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
Prepared using cnmauth.cls DOI: 10.1002/cnm

12

Geometry module

Under the hood, 4 types of model entities are defined:
1. Model points that are topological entities of dimension 0
2. Model curves that are topological entities of dimension 1
3. Model surfaces that are topological entities of dimension 2
4. Model volumes that are topological entities of dimension 3

G0
i

G1
i

G2
i

G3
i

13

Geometry module

• Model entities are topological entities, i.e., they only deal with
adjacencies in the model; a bi-directional data structure
represents the graph of adjacencies

• Any model is able to build its list of adjacencies of any
dimension using local operations

• The BRep is extended with non-manifold features: adjacent
entities, and embedded (internal) entities

• Model entities can be either CAD entities (e.g. from the built-
in or OpenCASCADE kernel) or discrete entities (defined by a
mesh, e.g. STL)

G0
i ⌦ G1

i ⌦ G2
i ⌦ G3

i

14

Geometry module

The geometry of a CAD model entity depends on the solid
modeler kernel for its underlying representation. Solid modelers
usually provide a parametrization of the shapes, i.e., a mapping:

1. The geometry of a model point is simply its 3-D location

2. The geometry of a model curve is its underlying curve
with its parametrization ,

3. The geometry of a model surface is its underlying surface
with its parametrization

4. The geometry associated to a model volume is

p 2 Rd 7! x 2 R3

G0
i

xi = (xi, yi, zi)

G1
i Ci

p(t) 2 Ci t 2 [t1, t2]

G2
i Si

p(u, v) 2 Si

R3

15

Geometry module

THE GMSH PAPER 7

u = u(t), v = v(t)

S

p(u, v)

C

v

u

x

x = x(t), y = y(t), z = z(t)

v = v(x, y, z)

C

S

p(x, y, z)

t1 p(t) tt2

C

u = u(x, y, z)

z

y

Figure 1. Point p located on the curve C that is itself embedded in surface S.

class GEdge : public GEntity{
// bi-directional data structure
GVertex *v1, *v2;
std::list<GFace*> faces;

public:
// pure virtual functions that have to be overloaded for every
// solid modeler
virtual std::pair<double> parRange() = 0;
virtual Point3 point(double t) = 0;
virtual Vector3 firstDer(double t) = 0;
virtual Point2 reparam(GFace *f, double t, int dir) = 0;
virtual bool isSeam(GFace *f) = 0;
// other functions of the class are non pure virtual
// ...

};

Figure 2. A part of the model edge class description. GEdge::parRange returns the range for the
parameter in the curve. GEdge::point returns the 3-D point p(t) that is located on the curve C for
a given parameter t. GEdge::firstDer evaluates the tangent vector @tp(t) for a given parameter t.
GEdge::reparam computes the local parameters of the point p(t) on a model face f that has C in its
closure, GEdge::isSeam tells if the curve is or is not a seam of the face f. Generally, seam edges are

used to maintain consistency of data structure for periodic surfaces.

Copyright c� 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 0:1–24
Prepared using nmeauth.cls

Point located on a curve that is itself embedded in a surface p C S

16

Geometry module

Operations on CAD model entities are performed directly within
their respective CAD kernels (e.g. built-in or OpenCASCADE):
• Gmsh does not translate across CAD formats (there is no

internal common geometrical representation)
• Rather, Gmsh directly accesses the native representation

using each CAD kernel’s own API

Figure 19: CAD model with 450 ellipsoids with random orientations and dimensions.

22

Figure 1: An Engine Block.

hexahedra, arranged in such a way that if two of them intersect, they do so
along a face, an edge or a node, and never otherwise.

Three-dimensional CAD models are represented on a computer using a
“Boundary Representation” (BRep) [?]: a volume is bounded by a set of
faces, a face is bounded by a serie of curves and a curve is bounded by two
end points. The BREP is a discrete object: it is a graph that contains model
entities together with all their topological adjacencies. Then a geometry is
associated to each model entity. Figure 1 presents a moderately complex
CAD model together with its 3D mesh generated using Gmsh.

As an example, consider a model face F with its boundary

@F = {C1, . . . , Cn}.

Face F is topologically closed, i.e. @(@F) = ;: each endpoint of the bound-
ing curves Cj is considered twice in F , one time positively and one time
negatively. The geometry of a model face F is its underlying surface S with
its parametrization

x : A 7! R3, (u, v) 7! x(u, v)

where A ⇢ R2 is a rectangular region [u0, u1] ⇥ [v0, v1]. A parametrization
is said to be regular if @ux and @vx are linearly independent:

@ux⇥ @vx 6= 0

2

Figure 2: Surface mesh of a model face. View of the mesh in the parameter plane (left)

and on R3
.

of radius R centered at the origin is parametrized as

x(u, v) = R sinu cos v

y(u, v) = R sinu sin v

z(u, v) = R cosu

where u 2 [0,⇡] is the inclination and v 2 [0, 2⇡[is the azimuth. At the
poles, i.e. when u = 0 or u = ⇡,

@vx = R(� sinu sin v, sinu cos v, 0) = (0, 0, 0)

vanishes and this parametrization is irregular at the two poles of the sphere.
In this paper, a new approach is proposed that allows to generate meshes

of surfaces with irregularities in an e�cient and robust fashion. At first,
we explain in §2 why indirect surface mesh generation procedures become
fragile at the vicinity of irregular points. Then in §3 and §5, we present the
critical modifications to standard meshing procedures that allow to address
issues related to irregular parametrizations. Examples of CAD models with
thousand of spheres and cones are finally be presented in §7.

2. The issue of meshing surfaces with irregular parametrizations

Two main approaches exist for surface meshing. The first approach,
usually called the “direct approach” [?], consists in generating the mesh
directly in R3. Di↵erent direct approaches have been proposed in the lit-
erature: advancing front methods [? ?], octree based methods [? ?],
methods based on local mesh modifications [? ?], methods based on re-
stricted Voronoi diagrams [?], ... Octree- and Voronoi- based methods

4

17

Geometry module

Discrete model entities are defined by a mesh (e.g. STL):
• They can be equipped with a geometry through a

reparametrization procedure
• This reparametrization is used for remeshing

Applied'&'Computa/onal'Electromagne/cs
(ACE)

C.'Geuzaine';'SysMod'seminar';'Nov'18th'2011 59

Quad&meshing&of&Falcon
Falcon

Applied'&'Computa/onal'Electromagne/cs
(ACE)

C.'Geuzaine';'SysMod'seminar';'Nov'18th'2011 58

Quad&meshing&of&Falcon
Falcon

Parametrizations of the surfaces of the Falcon aircraft in the {u,v}
plane.

18

Mesh module

• Gmsh implements several meshing algorithms with specific
characteristics
• 1D, 2D and 3D

• Structured, unstructured and hybrid

• Isotropic and anisotropic

• Straight-sided and curved

• From standard CAD data or from STL through reparametrization

• Built-in interfaces to external mesh generators (BAMG,
MMG3D, Netgen)

19

Mesh module

Typical CAD kernel idiosyncrasies: seam edges and degenerated edges

Applied'&'Computa/onal'Electromagne/cs
(ACE)

C.'Geuzaine';'SysMod'seminar';'Nov'18th'2011 4

Surface&meshes

Surface'triangula/ons'can'be'generated

• either'directly'in'the'embedding'3;D'Euclidean'space

• or'in'the'parametric'plane'of'the'surface,'which'is'far'more'robust'
(Delaunay'and'variants)

Surface mesh generation techniques

Surface meshes can be
1 generated directly in the “real” 3D space; or
2 generated in the parametric plane of the surface.

Several algorithms implemented: Delaunay, “Frontal Delaunay”, local
mesh modifications (collapse and splits only)

C. Geuzaine WIAS, December 4th, 2008

Surface mesh generation techniques
When a decent parametrization of the surface exists, building the
mesh in the parametric plane is more robust
Issues like seam and/or degenerated edges have to be taken into
account,
Need ability to generate (highly) anisotropic meshes.

C. Geuzaine WIAS, December 4th, 2008

C.#Geuzaine#+#Onera#Scien0fic#Day#+#Oct.#3#2012 2

Surface&meshes

Surface#triangula?ons#can#be#generated

• either#directly#in#the#embedding#3MD#Euclidean#space

• or#in#the#parametric#plane#of#the#surface,#which#is#far#more#robust#
(Delaunay#and#variants)

Surface mesh generation techniques

Surface meshes can be
1 generated directly in the “real” 3D space; or
2 generated in the parametric plane of the surface.

Several algorithms implemented: Delaunay, “Frontal Delaunay”, local
mesh modifications (collapse and splits only)

C. Geuzaine WIAS, December 4th, 2008

Surface mesh generation techniques
When a decent parametrization of the surface exists, building the
mesh in the parametric plane is more robust
Issues like seam and/or degenerated edges have to be taken into
account,
Need ability to generate (highly) anisotropic meshes.

C. Geuzaine WIAS, December 4th, 2008

20

Mesh module

• Mesh data is made of elements (points, lines, triangles,
quadrangles, tetrahedra, hexahedra, …) defined by an ordered
list of their nodes

• Elements and nodes are stored (classified) in the model entity
they discretize:
• A model point will thus contain a mesh element of type point, as

well as a mesh node
• A model curve will contain line elements as well as its interior

nodes, while its boundary nodes will be stored in the bounding
model points

• A model surface will contain triangular and/or quadrangular
elements and all the nodes not classified on its boundary or on its
embedded entities (curves and points)

21

Mesh module

• A model volume will contain tetrahedra, hexahedra, etc. and all
the nodes not classified on its boundary or on its embedded
entities (surfaces, curves and points)

This mesh data structure allows
to easily and efficiently handle
the creation, modification and
destruction of conformal finite
element meshes

22

Solver module

• Gmsh implements a ONELAB (http://onelab.info) server to
pilot external solvers, called “clients”

• Example client: GetDP finite element solver (http://getdp.info)

• The ONELAB interface
allows to call such
clients and have them
share parameters and
modeling information

• Parameters are
directly controllable
from the GUI

http://onelab.info/
http://getdp.info/

23

Solver module

• The implementation is based on a client-server model, with a
server-side database and local or remote clients
communicating in-memory or through TCP/IP sockets
• Contrary to most solver interfaces, the ONELAB server has no a

priori knowledge about any specifics (input file format, syntax, ...)
of the clients

• This is made possible by having any simulation preceded by an
analysis phase, during which the clients are asked to upload their
parameter set to the server

• The issues of completeness and consistency of the parameter
sets are completely dealt with on the client side: the role of
ONELAB is limited to data centralization, modification and re-
dispatching

24

Post-processing module

• Post-processing data is made of views
• A view stores both display options and data (unless the view is

an alias of another view)

• View data can contain several steps (e.g. to store time series)
and can be either linked to one or more models (mesh-
based data, as stored in MSH or MED files) or independent
from any model (list-based data, as stored in parsed POS files)

• Data is interpolated through arbitrary polynomial
interpolation schemes; automatic mesh refinement is used for
adaptive visualization of high-order views

• Various plugins exist to modify and create views

25

Post-processing module

• Cuts, iso-curves and vectors
• Elevation maps
• Streamlines
• Adaptive high-order

visualization J.-F. REMACLE ET AL.

Figure 15. Visualization of the acoustic pressure field on both y = 0 and z = 0 planes. Top sub-figure
shows the unrefined visualization results. Bottom sub-figure shows adaptive visualization results.

at time step 2500 are caused by the numerical scheme (the mesh is too coarse) and not to the
accuracy of the visualization algorithm.

8.2. Propagation of acoustic modes in an exhaust duct

We consider the problem of the propagation of acoustic modes in a quarter of a engine exhaust
duct. The geometry of the problem as well as the discretization mesh are represented in Figure 13.
We have solved the linearized Euler equations (LEE) using fourth-order polynomials and a dis-
continuous Galerkin formulation. We have used our visualization algorithm for drawing contours

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (in press)
DOI: 10.1002/nme

THE GMSH PAPER 21

cuts, iso-curves and vectors [3] elevation map
(K. A. Berger & B. Kubicek, Arsenal Research)

streamlines high-order solver interface
(P. Geuzaine, Cenaero) (Taken from Reference [37])

Figure 13. Some images from the solver and post-processing modules.

6. Post-Processing in Gmsh
The post-processing module can load, transform and display multiple post-processing datasets
(called “views”) at once, along with the geometry and the mesh. Each view can contain a mix
of scalar, vector and tensor data as well as text annotations. Views can be manipulated either
globally or individually (each view has its own button in the GUI and can be referred to by its
index in a script), and each one possesses its own set of display options. Internally, the view is
an abstract class that can access a variety of underlying representations, from the node-based
data sets used in standard finite element codes to high-order, discontinuous data sets used,
e.g., in discontinuous Galerkin or finite volume solvers [37].

Scalar fields are represented by iso-surfaces or color maps, while vector fields are represented

Copyright c� 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 0:1–24
Prepared using nmeauth.cls

THE GMSH PAPER 21

cuts, iso-curves and vectors [3] elevation map
(K. A. Berger & B. Kubicek, Arsenal Research)

streamlines high-order solver interface
(P. Geuzaine, Cenaero) (Taken from Reference [37])

Figure 13. Some images from the solver and post-processing modules.

6. Post-Processing in Gmsh
The post-processing module can load, transform and display multiple post-processing datasets
(called “views”) at once, along with the geometry and the mesh. Each view can contain a mix
of scalar, vector and tensor data as well as text annotations. Views can be manipulated either
globally or individually (each view has its own button in the GUI and can be referred to by its
index in a script), and each one possesses its own set of display options. Internally, the view is
an abstract class that can access a variety of underlying representations, from the node-based
data sets used in standard finite element codes to high-order, discontinuous data sets used,
e.g., in discontinuous Galerkin or finite volume solvers [37].

Scalar fields are represented by iso-surfaces or color maps, while vector fields are represented

Copyright c� 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 0:1–24
Prepared using nmeauth.cls

THE GMSH PAPER 21

cuts, iso-curves and vectors [3] elevation map
(K. A. Berger & B. Kubicek, Arsenal Research)

streamlines high-order solver interface
(P. Geuzaine, Cenaero) (Taken from Reference [37])

Figure 13. Some images from the solver and post-processing modules.

6. Post-Processing in Gmsh
The post-processing module can load, transform and display multiple post-processing datasets
(called “views”) at once, along with the geometry and the mesh. Each view can contain a mix
of scalar, vector and tensor data as well as text annotations. Views can be manipulated either
globally or individually (each view has its own button in the GUI and can be referred to by its
index in a script), and each one possesses its own set of display options. Internally, the view is
an abstract class that can access a variety of underlying representations, from the node-based
data sets used in standard finite element codes to high-order, discontinuous data sets used,
e.g., in discontinuous Galerkin or finite volume solvers [37].

Scalar fields are represented by iso-surfaces or color maps, while vector fields are represented

Copyright c� 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 0:1–24
Prepared using nmeauth.cls

26

Recent developments

• Constructive Solid Geometry
• Application Programming Interface (API)
• Parallel meshing
• Robust STL remeshing

27

Constructive Solid Geometry

http://en.wikipedia.org/wiki/Constructive_solid_geometry

http://en.wikipedia.org/wiki/Constructive_solid_geometry

28

Constructive Solid Geometry

SetFactory("OpenCASCADE");

R = DefineNumber[1.4 , Min 0.1, Max 2, Step 0.01,
Name "Parameters/Box dimension"];

Rs = DefineNumber[R*.7 , Min 0.1, Max 2, Step 0.01,
Name "Parameters/Cylinder radius"];

Rt = DefineNumber[R*1.25, Min 0.1, Max 2, Step 0.01,
Name "Parameters/Sphere radius"];

Box(1) = {-R,-R,-R, 2*R,2*R,2*R};

Sphere(2) = {0,0,0, Rt};

BooleanIntersection(3) = { Volume{1}; Delete; }{ Volume{2}; Delete; };

Cylinder(4) = {-2*R,0,0, 4*R,0,0, Rs};
Cylinder(5) = {0,-2*R,0, 0,4*R,0, Rs};
Cylinder(6) = {0,0,-2*R, 0,0,4*R, Rs};

BooleanUnion(7) = { Volume{4}; Delete; }{ Volume{5,6}; Delete; };
BooleanDifference(8) = { Volume{3}; Delete; }{ Volume{7}; Delete; };

Use OpenCASCADE CAD kernel

Explicit tags
Delete object and tool

29

Constructive Solid Geometry

gmsh/demos/boolean/boolean.geo

30

Constructive Solid Geometry

SetFactory("OpenCASCADE");

DefineConstant[
z = {16, Name "Parameters/z position of box"}
sph = {0, Choices{0,1}, Name "Parameters/Add sphere?"}

];

a() = ShapeFromFile("component8.step");
b() = 2;
Box(b(0)) = {0,156,z, 10,170,z+10};

If(sph)
b() += 3;
Sphere(b(1)) = {0,150,0, 20};

EndIf

r() = BooleanFragments{ Volume{a()}; Delete; }{ Volume{b()}; Delete; };
Save "merged.brep";

Physical Volume("Combined volume", 1) = {r()};
Physical Surface("Combined boundary", 2) = CombinedBoundary{ Volume{r()}; }

Import shapes from STEP or BREP

Implicit tags

BooleanFragments intersects everything

31

Constructive Solid Geometry

gmsh/demos/boolean/import.geo

32

Constructive Solid Geometry

• All existing .geo commands are conserved
• New or modified .geo commands:
• Shapes (with explicit numbering): Circle, Ellipse, Wire,

Surface, Sphere, Box, Torus, Rectangle, Disk, Cylinder,
Cone, Wedge, ThickSolid, ThruSections, Ruled ThruSections

• Operations (implicit numbering): ThruSections, Ruled
ThruSections, Fillet, Extrude

• Boolean operations (explicit or implicit numbering): BooleanUnion,
BooleanIntersection, BooleanDifference, BooleanFragments

• Other: ShapeFromFile, Recursive Delete

33

Application Programming Interface

Gmsh 4 introduces a new stable Application Programming
Interface (API) for C++, C, Python and Julia, with the following
design goals:
• Allow to do everything that can be done in .geo files
• … and then much more!

• Be robust, in particular to wrong input data (i.e. "never crash")
• Be efficient; but still allow to do simple things, simply
• Be maintainable over the long run

34

Application Programming Interface

To achieve these goals the Gmsh API
• is purely functional
• only uses basic types from the target language (C++, C, Python

or Julia)
• is automatically generated from a master API description file
• is fully documented J

35

Application Programming Interface

Same boolean example as before, but using the Python API:
import gmsh

gmsh.initialize()
gmsh.model.add("boolean")

R = 1.4; Rs = R*.7; Rt = R*1.25

gmsh.model.occ.addBox(-R,-R,-R, 2*R,2*R,2*R, 1)
gmsh.model.occ.addSphere(0,0,0,Rt, 2)
gmsh.model.occ.intersect([(3, 1)], [(3, 2)], 3)
gmsh.model.occ.addCylinder(-2*R,0,0, 4*R,0,0, Rs, 4)
gmsh.model.occ.addCylinder(0,-2*R,0, 0,4*R,0, Rs, 5)
gmsh.model.occ.addCylinder(0,0,-2*R, 0,0,4*R, Rs, 6)
gmsh.model.occ.fuse([(3, 4), (3, 5)], [(3, 6)], 7)
gmsh.model.occ.cut([(3, 3)], [(3, 7)], 8)

gmsh.model.occ.synchronize()

gsmh.model.mesh.generate(3)

gmsh.fltk.run()

gmsh.finalize()

gmsh/demos/api/boolean.py

36

Application Programming Interface

Or using the C++ API:
#include <gmsh.h>

int main(int argc, char **argv)
{

gmsh::initialize(argc, argv);

gmsh::model::add("boolean");

double R = 1.4, Rs = R*.7, Rt = R*1.25;

std::vector<std::pair<int, int> > ov;
std::vector<std::vector<std::pair<int, int> > > ovv;
gmsh::model::occ::addBox(-R,-R,-R, 2*R,2*R,2*R, 1);
gmsh::model::occ::addSphere(0,0,0,Rt, 2);
gmsh::model::occ::intersect({{3, 1}}, {{3, 2}}, ov, ovv, 3);
gmsh::model::occ::addCylinder(-2*R,0,0, 4*R,0,0, Rs, 4);
gmsh::model::occ::addCylinder(0,-2*R,0, 0,4*R,0, Rs, 5);
gmsh::model::occ::addCylinder(0,0,-2*R, 0,0,4*R, Rs, 6);
gmsh::model::occ::fuse({{3, 4}, {3, 5}}, {{3, 6}}, ov, ovv, 7);
gmsh::model::occ::cut({{3, 3}}, {{3, 7}}, ov, ovv, 8);

gmsh::model::occ::synchronize();

gmsh::model::mesh::generate(3);
gmsh::fltk::run();
gmsh::finalize();
return 0;

}
gmsh/demos/api/boolean.cpp

37

Application Programming Interface

In addition to CAD creation and meshing, the API can be used to
• Access mesh data (getNodes, getElements)
• Generate interpolation (getBasisFunctions) and integration

(getJacobians) data to build Finite Element and related solvers
(see e.g. demos/api/poisson.py)

• Create post-processing views
• Run the graphical user-interface
• Build custom graphical user-interfaces, e.g. for domain-specific

codes (see demos/api/custom_gui.py) or co-post-processing
via ONELAB

https://gitlab.onelab.info/gmsh/gmsh/blob/master/demos/api/poisson.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/demos/api/custom_gui.py

38

Application Programming Interface

In order to make this API easy to use, we publish a binary
Software Development Toolkit (SDK):
• Continuously delivered (for each commit in master), like the

Gmsh app
• Contains the dynamic Gmsh library together with the

corresponding C++/C header files, and Python and Julia
modules

39

Parallel Meshing

Most meshing algorithms are now multi-threaded using OpenMP:

• 1D and 2D algorithms are multithreaded using coarse-grained

approach, i.e. several curves/surfaces are meshed

concurrently

• The new 3D Delaunay-based algorithm is multi-threaded using

a fine-grained approach. It currently lacks several features

(embedded entities, hybrid meshes, …), which will eventually

be supported

You need to recompile Gmsh with -DENABLE_OPENMP=1 to enable

this; then e.g. gmsh file.geo -3 –nt 8 –algo hxt

40

Parallel Meshing

19

4.1 Small and medium size test cases on standard laptops
In order to verify the scalability of the whole meshing process, meshes of up to one hundred million tetrahedra were computed
on a 4 core 3.5 GHz Intel Core i7-6700HQ with 1, 2, 4 and 8 threads. Those meshes easily fit within the 8Gb of RAM of this
modern laptop.

Three benchmarks are considered in this section: (i) a cube filled with cylindrical fibers of random radii and lengths that are
randomly oriented, (ii) a mechanical part and (iii) a truck tire. Surface meshes are computed with Gmsh58. Mesh size on the
surfaces is controlled by surface curvatures and mesh size inside the domain is simply interpolated from the surface mesh.

Illustrations of the meshes, as well as timings statistics are presented in Figure 12. Our mesher is able to generate between 40
and 100 million tetrahedra per minute. Using multiple threads allows some speedup, the mesh refinement process is accelerated
by a factor ranging between 2 and 3 on this 4 core machine.

The last test case (truck tire) is defined by more than 7000 CAD surfaces. Recovering the 27 892 triangular facets missing from
T0 takes more than a third of the total meshing time with the maximal number of threads. Parallelizing the boundary recovery
process is clearly a priority of our future developments. On this same example, the surface mesh was done with Gmsh using four
threads. The surface mesher of Gmsh is not very fast and it took about the same time to generate the surface mesh of 6 881 921
triangles as to generate the volume mesh that contains over one hundred million tetrahedra using the same number of threads.
The overall meshing time for the truck tire test case is thus about 6 minutes.

104 105 106 107

0.1

1

10

Number of points (random uniform distribution)

Ti
m

e
[s

]

Ours
Geogram 1.5.4
CGAL 4.12

vertices 104 105 106 107

Ours 0.032 0.13 0.85 7.40
Geogram 0.041 0.19 1.73 17.11
CGAL 0.037 0.24 2.20 23.37

4-core Intel: CoreTM i7-6700HQ CPU.

104 105 106 107 108
0.1

1

10

100

Number of points (random uniform distribution)

Ti
m

e
[s

]

Ours
Geogram 1.5.4
CGAL 4.12

vertices 104 105 106 107 108

Ours 0.11 0.43 1.17 4.48 28.95
Geogram 0.10 0.54 4.58 43.70 /
CGAL 0.27 0.48 2.44 20.15 /

64-core Intel: Xeon PhiTM 7210 CPU.

FIGURE 11 Comparison of our parallel implementation with the parallel implementation in CGAL57 and Geogram with on a
high-end laptop (a) and a many-core computer (b). All timings are in seconds.

41

Parallel Meshing

25

100 fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 12 608 242 0.74 19.6 20.8
2 12 600 859 0.72 13.6 14.6
4 12 567 576 0.72 8.7 9.8
8 12 586 972 0.71 7.6 8.7

300 fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 52 796 891 6.03 92.4 101.3
2 52 635 891 5.76 61.2 69.0
4 52 768 565 5.71 39.4 46.8
8 52 672 898 5.67 32.5 39.8

Mechanical part

threads # tetrahedra Timings (s)
BR Refine Total

1 24 275 207 8.6 43.6 56.3
2 24 290 299 8.4 30.4 41.8
4 24 236 112 8.1 24.6 35.3
8 24 230 468 8.1 21.8 32.6

Truck tire

threads # tetrahedra Timings (s)
BR Refine Total

1 123 640 429 75.9 259.7 364.7
2 123 593 913 74.5 166.8 267.1
4 123 625 696 74.2 107.4 203.6
8 123 452 318 74.2 95.5 190.0

FIGURE 12 Performances of our parallel mesh generator on a AMD: EPYC 64 core machine. Wall clock times are given for the
whole meshing process for 1 to 8 threads. They include IOs (sequential), initial mesh generation (parallel), as well as sequential
boundary recovery (BR), and parallel Delaunay refinement for which detailed timings are given.

26

100 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 325 611 841 3.1 492.1 497.2
2 325 786 170 2.9 329.7 334.3
4 325 691 796 2.8 229.5 233.9
8 325 211 989 2.7 154.6 158.7
16 324 897 471 2.8 96.8 100.9
32 325 221 244 2.7 71.7 75.8
64 324 701 883 2.8 55.8 60.1

127 324 190 447 2.9 47.6 52.0

500 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 723 208 595 18.9 1205.8 1234.4
2 723 098 577 16.0 780.3 804.8
4 722 664 991 86.6 567.1 659.8
8 722 329 174 15.8 349.1 370.1
16 723 093 143 15.6 216.2 236.5
32 722 013 476 15.6 149.7 169.8
64 721 572 235 15.9 119.7 140.4

127 721 591 846 15.9 114.2 135.2

Aircraft

threads # tetrahedra Timings (s)
BR Refine Total

1 672 209 630 45.2 1348.5 1418.3
2 671 432 038 42.1 1148.9 1211.5
8 665 826 109 39.6 714.8 774.8
64 664 587 093 38.7 322.3 380.9

127 663 921 974 38.1 255.0 313.3

FIGURE 13 Performances of our parallel mesh generator on a AMD: EPYC 64 core machine. Wall clock times are given for
the whole meshing process for 1 to 127 threads. They include IOs (sequential), initial mesh generation (parallel), as well as
sequential boundary recovery (BR), and parallel Delaunay refinement for which detailed timings are given.

26

100 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 325 611 841 3.1 492.1 497.2
2 325 786 170 2.9 329.7 334.3
4 325 691 796 2.8 229.5 233.9
8 325 211 989 2.7 154.6 158.7
16 324 897 471 2.8 96.8 100.9
32 325 221 244 2.7 71.7 75.8
64 324 701 883 2.8 55.8 60.1

127 324 190 447 2.9 47.6 52.0

500 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 723 208 595 18.9 1205.8 1234.4
2 723 098 577 16.0 780.3 804.8
4 722 664 991 86.6 567.1 659.8
8 722 329 174 15.8 349.1 370.1
16 723 093 143 15.6 216.2 236.5
32 722 013 476 15.6 149.7 169.8
64 721 572 235 15.9 119.7 140.4

127 721 591 846 15.9 114.2 135.2

Aircraft

threads # tetrahedra Timings (s)
BR Refine Total

1 672 209 630 45.2 1348.5 1418.3
2 671 432 038 42.1 1148.9 1211.5
8 665 826 109 39.6 714.8 774.8
64 664 587 093 38.7 322.3 380.9

127 663 921 974 38.1 255.0 313.3

FIGURE 13 Performances of our parallel mesh generator on a AMD: EPYC 64 core machine. Wall clock times are given for
the whole meshing process for 1 to 127 threads. They include IOs (sequential), initial mesh generation (parallel), as well as
sequential boundary recovery (BR), and parallel Delaunay refinement for which detailed timings are given.

26

100 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 325 611 841 3.1 492.1 497.2
2 325 786 170 2.9 329.7 334.3
4 325 691 796 2.8 229.5 233.9
8 325 211 989 2.7 154.6 158.7
16 324 897 471 2.8 96.8 100.9
32 325 221 244 2.7 71.7 75.8
64 324 701 883 2.8 55.8 60.1
127 324 190 447 2.9 47.6 52.0

500 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 723 208 595 18.9 1205.8 1234.4
2 723 098 577 16.0 780.3 804.8
4 722 664 991 86.6 567.1 659.8
8 722 329 174 15.8 349.1 370.1
16 723 093 143 15.6 216.2 236.5
32 722 013 476 15.6 149.7 169.8
64 721 572 235 15.9 119.7 140.4
127 721 591 846 15.9 114.2 135.2

Aircraft

threads # tetrahedra Timings (s)
BR Refine Total

1 672 209 630 45.2 1348.5 1418.3
2 671 432 038 42.1 1148.9 1211.5
8 665 826 109 39.6 714.8 774.8
64 664 587 093 38.7 322.3 380.9
127 663 921 974 38.1 255.0 313.3

FIGURE 13 Performances of our parallel mesh generator on a AMD: EPYC 64 core machine. Wall clock times are given for
the whole meshing process for 1 to 127 threads. They include IOs (sequential), initial mesh generation (parallel), as well as
sequential boundary recovery (BR), and parallel Delaunay refinement for which detailed timings are given.

42

Parallel Meshing

26

100 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 325 611 841 3.1 492.1 497.2
2 325 786 170 2.9 329.7 334.3
4 325 691 796 2.8 229.5 233.9
8 325 211 989 2.7 154.6 158.7

16 324 897 471 2.8 96.8 100.9
32 325 221 244 2.7 71.7 75.8
64 324 701 883 2.8 55.8 60.1
127 324 190 447 2.9 47.6 52.0

500 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 723 208 595 18.9 1205.8 1234.4
2 723 098 577 16.0 780.3 804.8
4 722 664 991 86.6 567.1 659.8
8 722 329 174 15.8 349.1 370.1

16 723 093 143 15.6 216.2 236.5
32 722 013 476 15.6 149.7 169.8
64 721 572 235 15.9 119.7 140.4
127 721 591 846 15.9 114.2 135.2

Aircraft

threads # tetrahedra Timings (s)
BR Refine Total

1 672 209 630 45.2 1348.5 1418.3
2 671 432 038 42.1 1148.9 1211.5
8 665 826 109 39.6 714.8 774.8

64 664 587 093 38.7 322.3 380.9
127 663 921 974 38.1 255.0 313.3

FIGURE 13 Performances of our parallel mesh generator on a AMD: EPYC 64 core machine. Wall clock times are given for
the whole meshing process for 1 to 127 threads. They include IOs (sequential), initial mesh generation (parallel), as well as
sequential boundary recovery (BR), and parallel Delaunay refinement for which detailed timings are given.

26

100 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 325 611 841 3.1 492.1 497.2
2 325 786 170 2.9 329.7 334.3
4 325 691 796 2.8 229.5 233.9
8 325 211 989 2.7 154.6 158.7

16 324 897 471 2.8 96.8 100.9
32 325 221 244 2.7 71.7 75.8
64 324 701 883 2.8 55.8 60.1

127 324 190 447 2.9 47.6 52.0

500 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 723 208 595 18.9 1205.8 1234.4
2 723 098 577 16.0 780.3 804.8
4 722 664 991 86.6 567.1 659.8
8 722 329 174 15.8 349.1 370.1

16 723 093 143 15.6 216.2 236.5
32 722 013 476 15.6 149.7 169.8
64 721 572 235 15.9 119.7 140.4

127 721 591 846 15.9 114.2 135.2

Aircraft

threads # tetrahedra Timings (s)
BR Refine Total

1 672 209 630 45.2 1348.5 1418.3
2 671 432 038 42.1 1148.9 1211.5
8 665 826 109 39.6 714.8 774.8

64 664 587 093 38.7 322.3 380.9
127 663 921 974 38.1 255.0 313.3

FIGURE 13 Performances of our parallel mesh generator on a AMD: EPYC 64 core machine. Wall clock times are given for
the whole meshing process for 1 to 127 threads. They include IOs (sequential), initial mesh generation (parallel), as well as
sequential boundary recovery (BR), and parallel Delaunay refinement for which detailed timings are given.

26

100 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 325 611 841 3.1 492.1 497.2
2 325 786 170 2.9 329.7 334.3
4 325 691 796 2.8 229.5 233.9
8 325 211 989 2.7 154.6 158.7
16 324 897 471 2.8 96.8 100.9
32 325 221 244 2.7 71.7 75.8
64 324 701 883 2.8 55.8 60.1

127 324 190 447 2.9 47.6 52.0

500 thin fibers

threads # tetrahedra Timings (s)
BR Refine Total

1 723 208 595 18.9 1205.8 1234.4
2 723 098 577 16.0 780.3 804.8
4 722 664 991 86.6 567.1 659.8
8 722 329 174 15.8 349.1 370.1
16 723 093 143 15.6 216.2 236.5
32 722 013 476 15.6 149.7 169.8
64 721 572 235 15.9 119.7 140.4

127 721 591 846 15.9 114.2 135.2

Aircraft

threads # tetrahedra Timings (s)
BR Refine Total

1 672 209 630 45.2 1348.5 1418.3
2 671 432 038 42.1 1148.9 1211.5
8 665 826 109 39.6 714.8 774.8
64 664 587 093 38.7 322.3 380.9

127 663 921 974 38.1 255.0 313.3

FIGURE 13 Performances of our parallel mesh generator on a AMD: EPYC 64 core machine. Wall clock times are given for
the whole meshing process for 1 to 127 threads. They include IOs (sequential), initial mesh generation (parallel), as well as
sequential boundary recovery (BR), and parallel Delaunay refinement for which detailed timings are given.

43

Robust STL remeshing based on parametrizations

Batman STL mesh

44

Robust STL remeshing based on parametrizations

Automatic atlas creation: each patch is provably parametrizable by
solving a linear PDE, using mean value coordinates

45

Robust STL remeshing based on parametrizations

Remeshing

46

Robust STL remeshing based on parametrizations

Automatic atlas creation, this time with feature edge detection

47

Robust STL remeshing based on parametrizations

Remeshing with feature edge detection

48

Robust STL remeshing based on parametrizations

Figure 20: CT scan of an artery. The initial triangulation (left) that contains 63, 468 triangles
has been split into 101 surfaces that are parametrizable. Most of the cuts were done because
of the large aspect ration of the tubular domains. The uniform mesh on the right that contains
170, 692 triangles has been generated by Gmsh in 22 seconds, including IO’s.

Figure 21: Remeshing of a skull. The initial triangulation (left) that contains 142, 742 triangles
has been split into 715 surfaces that are parametrizable. The mesh on the right is adapted to
the surface curvature and contains 323, 988 triangles and has been generated by Gmsh in 58
seconds, including IO’s.

23

CT scan of an artery: 101 patches created, most because of the large
aspect ratio

49

Robust STL remeshing based on parametrizations

Figure 20: CT scan of an artery. The initial triangulation (left) that contains 63, 468 triangles
has been split into 101 surfaces that are parametrizable. Most of the cuts were done because
of the large aspect ration of the tubular domains. The uniform mesh on the right that contains
170, 692 triangles has been generated by Gmsh in 22 seconds, including IO’s.

Figure 21: Remeshing of a skull. The initial triangulation (left) that contains 142, 742 triangles
has been split into 715 surfaces that are parametrizable. The mesh on the right is adapted to
the surface curvature and contains 323, 988 triangles and has been generated by Gmsh in 58
seconds, including IO’s.

23

Remeshing of a skull: 715 patches created for reparametrization; mesh
adapted to curvature

50

Robust STL remeshing based on parametrizations

Remeshing of an X-ray tomography image of a silicon carbide foam by P. Duru,
F. Muller and L. Selle (IMFT, ERC Advanced Grant SCIROCCO): 1,802 patches

created for reparametrization

51

Conclusions and perspectives

• Overview of Gmsh and recent developments:
• Constructive Solid Geometry
• Application Programming Interface
• New parallel algorithms
• Robust STL remeshing

• Many exciting developments in the pipeline:
• Improved high-order remeshing
• Hex-dominant meshes
• (Semi-)automatic bloc-structured decompositions
• Boundary layers

52

Post-Scriptum

• To download Gmsh: http://gmsh.info

• For fun, go to the

• Google Play Store (if you are on Android)

• Apple AppStore (if you are on iOS)

and download the ONELAB app: it contains a full-

featured version of Gmsh + the finite element solver

GetDP

… so you can impress your friends by solving finite

element models on your smartphone!

• For references, see http://gmsh.info/#References

http://gmsh.info/
https://play.google.com/store/apps/details?id=org.geuz.onelab
https://itunes.apple.com/us/app/onelab/id845930897
http://gmsh.info/

