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SUMMARY

We present a fully automatic procedure for the mesh generation of tubular geometries such as blood vessels
or airways. The procedure is implemented in the open-source Gmsh software and relies on a centerline
description of the input geometry. The is able to generate different type of meshes: isotropic tetrahedral
meshes, anisotropic tetrahedral meshes and mixed hexahedral/tetrahedral meshes. Additionally a multiply
layered arterial wall can be generated with a variable thickness. All the generated meshes rely on a mesh size
field and a mesh metric that is based on centerline descriptions, namely the distance to the centerlines and
a local reference system based on the tangent and normal directions to the centerlines. Different examples
show that the proposed method is very efficient and robust and leads to high quality computational meshes.
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1. INTRODUCTION

Nowadays patient specific simulations are widely used in the cardiovascular or respiratory field
in order to investigate either local hemodynamics or deposition fraction from inhaled respiratory
aerosols. An important but time consuming step in the modeling process is the creation of a quality
computational mesh based on the segmented geometry. This segmented geometry is a tubular
geometry with possibly several bifurcations and that is most of the times an STL triangulation
of low quality.

The pipeline leading from the segmented geometry to the computational mesh usually comprises:
(i) the generation of a high quality surface mesh, (ii) the creation and meshing of planar regions
for boundary conditions, (iii) the extrusion of the surface mesh in order to create the geometry
and volume mesh of the solid wall, (iv) the volume mesh generation of the lumen. The latter
step sometimes includes a boundary layer mesh in the vicinity of the lumen surface. Most known
solutions to create a computational mesh still require to perform manually those different steps. If
some of those steps (such as the tetrahedral meshing) are automated, other steps still require a large
amount of manual processing.

In this paper, we present a fully automatic procedure for the mesh generation of tubular
geometries. The procedure relies on a centerline description of the geometry that is computed
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2 E. MARCHANDISE

using the open source Vascular Modeling Toolkit (VMTK, www.vmtk.org). The new automatic
meshing procedure is very efficient and robust and leads to high quality computational meshes. It
is implemented inside the open source meshing software Gmsh [12] and examples on how to use it
can be found on the Gmsh wiki (https://geuz.org/trac/gmsh).

The procedure is able to generate different type of meshes: isotropic tetrahedral meshes,
anisotropic tetrahedral meshes or mixed hexahedral/tetrahedral meshes. Additionally a multiply
layered arterial wall can be generated with a variable thickness. All the generated meshes rely on
a mesh size field and a mesh metric that is based on centerline descriptions (distance to centerlines
and local reference system based on the tangent and normal directions to the centerlines).

Our mixed hexahedral/tetrahedral meshes contain hexahedra in the extruded wall and tetrahedra
in the vessel lumen. Pyramids are created as transition elements between tetrahedra and
hexahedra [23]. Those meshes are based on a quadrangular surface mesh of the geometry. The
presented algorithm of quadrangular mesh generation is an original approach that is a combination
of a structured elliptic mesh generation approach [32] and an indirect approach [26] that uses
distances in theL∞ norm as a base for inserting new points and generates right triangles that are then
recombined into quadrangles [27]. From the quadrangular surface mesh, we generate an extruded
boundary layer mesh as well as an unstructured tetrahedral mesh of the lumen with pyramids as
transition elements. We are currently also working on an optimal placement of the mesh vertices in
the lumen for the recombination of the tetrahedra into hexahedra [35, 34, 20], which will allow to
also generate hexahedral dominant meshes. It follows that the presented unstructured approach for
hexahedral mesh generation is a general and quite fast compared with block-structured hexahedral
mesh generation such as centerline-based sweeping methods [36, 7]. Indeed, such block-structured
methods require that source and target have similar topology, which means that many templates for
different tubular branching configurations (trifurcation or higher order branching) are needed.

Our centerline-based meshing algorithm is able to generate high quality tetrahedral and mixed
meshes as well as adaptive tetrahedral meshes suitable for numerical methods, such as finite
element or finite volume methods. As far as hexahedral meshes are concerned, such meshes
are very attractive. It has indeed been shown by several authors that hexahedral meshes provide
higher accuracy and reduce computational costs both for Finite Element Analysis (FEA) and
Computational Fluid Dynamics (CFD) [7, 33, 16]. For example De Santis showed in [7] that
when calculating the Wall Shear Stress (WSS) from the CFD solution, hexahedral meshes converge
better and, for the same accuracy of the result, require less computational time when compared to
tetrahedral or mixed tetrahedral/prismatic meshes. In a similar manner, Vinchurkar [33, 16] showed
that structured or unstructured hexahedral meshes were more efficient (better grid convergence) than
other types of meshes for predicting particle deposition in a bifurcating model of the respiratory
tract because the mesh elements are aligned with the predominant direction of flow, thereby
reducing numerical diffusion errors. In the same vein, anisotropic tetrahedral meshes aligned with
the dominant direction of flow (i.e. the centerlines) are also very attractive as they reduce the number
of elements and degrees of freedom, leading to significant computational savings for a given level
of accuracy [30, 29, 4].

Different examples show that the proposed meshing approach is very efficient and robust and that
the generated meshes are of high quality.

2. MATERIALS AND METHOD

In this section, we present the specific implementation of the pipeline of our automatic meshing
approach based on centerlines. The starting point of our algorithm is the segmented triangulated
surface of arbitrary quality†, i.e a set of N mesh triangles T = {T1, ..., TN} and a set of M surface
mesh vertices X = {x1, ...,xM}.

†e.g a surface in STL format
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MESHING TUBULAR SURFACES BASED ON CENTERLINE 3

2.1. Generation of centerlines

The centerlines C of a tubular geometry are the paths on the Voronoi diagram that minimize the
integral of the radius of maximal inscribed spheres along the path. The centerlines are computed
using the open source Vascular Modeling Toolkit [3, 2] (VMTK, www.vmtk.org) as follows‡:

vmtk vmtkcenterlines -seedselector openprofiles -ifile input.stl -ofile centerlines.vtk

The discrete centerlines (as given by VMTK) are a set of K consecutive line segments C =
{s1, s2, ...., sK} and L mesh vertices Xc = {xc1 , ...,xcL}. Every line segment sk is defined by
a starting point xci and end point xcj on the centerlines sk = xcixcj . A new mesh field named
Centerline has been implemented within Gmsh that takes as input such discrete centerlines C.
From the centerline field, two geometrical descriptors are computed and three different operators
are defined.

Figure 1 shows a geometrical model of a bronchial airway tree together with the extracted
centerlines. Both colors and thickness of the centerlines represent the vessel radius computed as
described in the following paragraph.

(a) (b)

Figure 1. Geometric models of a patient-specific bronchial airway tree (a) together with the extracted
centerlines (b). The colors and thickness of the centerlines represent the vessel radius (a centerline-based

descriptor computed within Gmsh).

2.2. Centerline-based descriptors in Gmsh

Two geometrical descriptors are computed from the centerlines C:

• the local radii,
• a triad axis.

The local radius r(xc) of the vessel is the distance from a point on the centerline xc to the tubular
geometry. This local radius is computed efficiently by first storing all the mesh vertices of the tubular
geometry in a search tree (Approximate Nearest Neighbor ANN) [21, 22] and by using the search
tree to compute the closest point xp ∈ X . The local radius r(xc) is the distance between xp and xc.

The triad axis is a local reference system for every point in the volume x ∈ R3 that is based on the
centerline field. The local axes are the abscissa (unit vector tangent to the centerlines), the normal (a
vector perpendicular to the centerlines) and the binormal which can be calculated as a cross product

‡It should be noted that prior to computing the centerlines, flow extensions can be added with vmtk for the inlets and
outlets of the tubular geometry (inputExtended.stl), so that the computed centerlines (centerlines.vtk) extend out from the
inlets and outlets of the input tubular geometry (input.stl).
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4 E. MARCHANDISE

of the abscissa and normal: (et(x), en(x), ebn(x)). The triad axis is computed as follows: for a point
x in the volume to be remeshed (i) compute, using a fast search tree such as ANN, the two closest
points on the centerlines xc1 and xc2 so that et = xc2 − xc1, (ii) compute the normal en = x− xc1,
(ii) compute the binormal as the cross product of the abscissa and the normal. Figure 2 shows an
example of the local radius r(xc) for a point on the centerline and of a triad axis for a point x in
the volume of an aortic arch. As will be explained in the next sections, the triad axis enables us to
define an anisotropic mesh metric in order to produce anisotropic meshes.

b1

b4

b7

et
r(xc)

enx
xc

b6

Figure 2. Centerline-based geometrical descriptors and operators used for the generation of an anisotropic
mesh of a human aorta. The local radius r(xc) is defined at a point on the centerlines xc and the triad axis
(et(x), en(x), ebn(x)) is defined at a mesh point x ∈ R3. The branched tree B defined from the centerlines
is made of W = 7 branches. The initial surface mesh T has been cut by disks at 4 different locations (see

red circles) being either the tree bifurcations or locations along the long branches (such as branch b7).

2.3. Centerline-based operators in Gmsh

Besides the geometrical descriptors, three centerline-based operators are defined:

• a cut operator,
• a close-volume operator,
• a vessel wall model generation.

The cut operator is used for the remeshing of the initial triangulation. This centerline-based
operator can cut the initial tubular geometry into different mesh patches Sj of moderate geometrical
aspect ratio η = H/D, i.e the ratio between the height and the diameter of the tube. This cut
operator is very useful for the remeshing of the tubular geometries that have a large aspect ratio
η (see the 5 mesh patches of Figure 2 and the 17 mesh patches of Figure 4). This cut operator is
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MESHING TUBULAR SURFACES BASED ON CENTERLINE 5

important as our surface remeshing technique relies on a discrete conformal parametrization of the
surface [17, 25, 18, 19], as we have shown that a necessary condition for avoiding indistinguishable
coordinates in the parametric space is to ensure that the geometrical aspect ratio remains smaller
than η = 4. The conformal parametrizing of a surface patch Sj is a mapping u(x) that transforms
continuously the 3D surface Sj into a 2D surface S′j embedded in R2 and that preserves (in a least
square sense) the angles between the iso-u and iso-v lines.

x ∈ Sj ⊂ R3 7→ u(x) ∈ S′j ⊂ R2. (1)

Figure 3 shows the computed conformal mapping for a triangulated surface of a tri-bifurcation (see

S ′
ju(x)

u
v

Sj

Figure 3. A conformal mapping u(x) = {u(x), v(x)} that transforms continuously a 3D surface Sj ∈ R3 (a
tri-bifurcation) into a 2D surface S′j embedded in R2. The red lines on the 3D surface are the iso-u and iso-v

lines.

[19] for more details about how to compute the conformal mapping). The initial surface patch Sj
can then be remeshed in the parametric space using any 2D mesh generation procedure with a given
variable isotropic mesh size field or an anisotropic mesh metric. The new mesh is then mapped back
to the original surface.

The cut operator relies on a branched tree structure of the centerlines. A branched tree is a set of
W branches B = {b1, ..., bW } that know their children branches (see the branched tree structure of
the lung made of W = 305 branches in Figure 1b or the branched tree structure of the aorta made
of W = 7 branches in Figure 2). The data structure of a branch is described in Algorithm 1. The
variables of a branch bj are its length lj , the minimum and maximal local radius r(xcj) of all mesh
vertices of the branch X bjc = {xc1, ...,xcJ}. Using the branched tree, the cut algorithm is defined in
Algorithm 2. We loop over all the branches of the tree, and cut the mesh by a disk at all the tree
bifurcations and at different lengths of the branch such that the maximal aspect ratio of a branch
never exceeds η = 4. The cutByDisk function cuts the triangular input mesh T = {T1, ..., TN} by a
disk. Every cut triangle Ti is divided into 3 sub-triangles. The disk is defined by a point xc on the
centerlines, the direction of the centerlines d(xc) and a radius R that is taken as a percentage of
the local radius at that point: R = 1.2 r(xc). Figure 4 shows an example of an initial STL mesh T
that has been cut by 16 disks using the centerline-based cut operator. The resulting mesh contains
17 different surface patches Sj than can be remeshed using the remeshing techniques based on
parametrizations. Figure 4b shows the conformal parametrization of the white mesh patch.

The second operator is the close-volume operator. This operator creates planar faces at the
inlet and outlet of the tubular geometry. The planar faces are defined by the mean plane of the
mesh vertices x ∈ X located at the boundaries of the input geometry. Those faces can then be
subsequently meshed by the planar mesh generators.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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a) b)

Figure 4. The cut operator based on the centerlines has cut the initial tubular geometry, a cerebral aneurysm,
into 17 different mesh surfaces Sj (a). For the remeshing of those patches, a conformal parametrization u(x)

is computed for every mesh patch. The parametrization is shown for the white mesh patch (b).

Algorithm 1 A Branch of a tree

struct Branch {
double length;
double minRad, maxRad;
vector<line segments> lines;
vector<Branch> children;

}

Algorithm 2 The cut-operator algorithm

for i = 0 to W branches do
b = branches(i)
if b.children then

point, direction, radius← b.lines.end (location of the bifurcation)
cutByDisk (point, direction,radius)

end if
η = b.length/(b.minRad+b.maxRad)
if η > 4 then

nbCut = η/4
maxLength = b.length/nbCut
for j = 0 to nbCut do

point(j), direction(j), radius(j)← maxLength, b.lines
cutByDisk(point(j), direction(j), radius(j))

end for
end if

end for

The last defined operator is a vessel wall model generation. In many cases, the entire wall surface
is not available from image segmentation and needs to be reconstructed from the lumen wall using
for example a quite realistic radius-dependent wall-thickness δW such as a percentage of the local
radius of the tubular geometry. The geometry of the wall surface can then be obtained by extruding
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MESHING TUBULAR SURFACES BASED ON CENTERLINE 7

the lumen surface mesh in the outward direction with a radius-dependent wall thickness. The
extrusion is performed in Gmsh using an advancing layer method [10, 6, 15] with a given number
of layers. The method starts from a surface mesh on which a boundary layer must be grown. From
each surface node x ∈ X a direction is picked for placing the nodes of the boundary layer mesh. The
direction is computed using an estimate to the surface normal at the node using Gouraud shading
and the extrusion thickness δ is computed as a percent α of the vessel radius:

δW (x) = αr (xc (x)) , (2)

where xc ∈ Xc is the mesh vertex on the centerlines that is closest to x. The nodes are connected to
form layers of hexahedra or prisms that can be subsequently subdivided into tetrahedra. An example
of vessel wall generation is shown in Figure 5.

Figure 5. Vessel wall model generation for the geometry of cerebral aneurysm: cut-away view of the
tetrahedral volume mesh of both the lumen (in green) and the vessel wall (in yellow). The vessel wall is

built using a radius-dependent wall thickness δW (x) with α = 0.2 and 4 layers.

2.4. Defining mesh metrics for anisotropic meshes

In order to create a 3D anisotropic computational mesh from an input geometry, we need to define
mesh size fields h in respectively the tangent ht, the normal hn and the binormal hbn direction to
the centerlines. The following mesh metricM(x) can then computed:

M(x) = RT

 h−2t 0 0
0 h−2n 0
0 0 h−2bn

R, (3)

where R = (et, en, ebn) is the triad axis computed from the centerline field. This mesh metric can
then be used by the different 1D, 2D and 3D meshing algorithms.

There are several criteria than can be applied to assign the different mesh sizes at each point x:

• If one is willing to build a CFD boundary layer mesh of thickness δ inside the lumen inside
the lumen, the normal mesh size can be computed as:

hn(x) = h0n + (r − 1)d(x), (4)

where d(x) is the distance to the tubular geometry T that is again computed efficiently using
an ANN [21, 22], r > 1 is the normal growth of the boundary layer, i.e. the ratio between two
successive element sizes in the normal direction and h0n is the normal size at the wall. This
normal size can be for example a function of the vessel radius at the wall: h0n = αr(xc).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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• Some control on the geometrical accuracy of the mesh should be ensured. For that, mesh sizes
ht and hbn should depend on the curvature of the surface in directions et and ebn. Note here
that et and ebn may not be the principal directions of curvature of the surface. Those two
directions are chosen anyway for building the metric for reasons of stability and consistency.
Typically, we choose for the mesh points on the wall:

h0t =
2πρ0t
Np

and h0bt =
2πρ0bn
Np

(5)

with Np a control parameter that is the number of mesh points per circumference and ρt and
ρbn the radii of curvature of the surface in both directions et and ebn. Here, curvatures are
computed on the discrete tubular surface using the method proposed by S. Rusinkiewicz [28].
When we leave the surface, the tangent mesh size is allowed to grow as follows:

ht(x) = h0t (ρ0 + σd(x))/ρ0, (6)

where σ is the sign of the curvature.

A more subtle control on the tangent mesh size fields has however to be done in order to avoid
large variations of mesh sizes. Let us consider a 2D geometrical domain Ω of boundary Γ with radius
of curvature ρ0 (see Figure 6). A boundary layer mesh of thickness δ is constructed with a prescribed
“normal to the wall” mesh size hn (Eq. (4)). The boundary layer thickness δ is sufficiently thin to
ρ ≈ ρ0. We raise here the following question: is it possible to choose freely the “tangent to the wall”
mesh size ht? In most mesh generation procedures, a smoothing smoothing step is applied to the
metric field in order to avoid large variation of mesh sizes. A smoothing ratio β ≥ 1 is defined as
the maximum ratio of two adjacent edge lengths. Let us demonstrate in 2D that mesh size ht(x) is
indeed constrained by β, hn and ρ0 and should therefore not be given using (5) and (6). At point x1,

h0t

h0n

ρ0
y

x

Γ

x1

Ω

δ

ρ

θ

hn
x2

ht

Figure 6. Defining the mesh sizes ht and hn on a 2D geometry of boundary Γ with
radius of curvature ρ0. The boundary layer thickness δ is sufficiently thin so that

ρ ≈ ρ0 in the boundary layer.

the 2D metric field can be written as

M(x1) =

(
h−2t 0

0 h−2n

)
.
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At point x2, the metric is rotated of an angle θ:

M(x2) =

(
cos θ − sin θ
sin θ cos θ

)(
h−2t 0

0 h−2n

)(
cos θ sin θ
− sin θ cos θ

)
=

1

h2nh
2
t

(
h2n cos2 θ + h2t sin2 θ (h2n − h2t ) cos θ sin θ
(h2n − h2t ) cos θ sin θ h2t cos2 θ + h2n sin2 θ

)
. (7)

Assuming θ = ht/ρ
0 � 1, we have

cos2 θ ' 1− h2t
(ρ0)2

and sin2 θ ' h2t
(ρ0)2

.

and the mesh size hx in the x direction at point x2 is computed as

1

h2x
=

1

h2nh
2
t

(h2n cos2 θ + h2t sin2 θ) ' 1

h2t
+

1

(ρ0)2

(
h2t
h2n
− 1

)
.

It is now possible to correct mesh ht in direction x at point x1 using the relation ht = βhx, i.e.,

β2

h2t
=

1

h2t
+

1

(ρ0)2

(
h2t
h2n
− 1

)
. (8)

Providing that 1
h2
t

is positive, (8) has the unique solution

1

h2t
=

1

2(ρ0)2(β2 − 1)

(√
1 +

4(ρ0)2(β2 − 1)

h2n
− 1

)
. (9)

Mesh size ht is then an upper bound of the mesh size in the tangent direction: for example, if ρ is
very large, then the tangent mesh size can be chosen arbitrarily. If β = 1, then equation (8) has the
solution ht = hn which means that no anisotropy is possible in a uniform mesh.

The final mesh metric M(x) is calculated as (3) with ht, hbn and hn being computed as the
minimum mesh size with respect to all criteria.

Using the anisotropic mesh metric (3), we can compute the length of a path given by a mesh edge
e = xixj using the straight line parametrization x(t) = xi + txixj , t ∈ [0, 1]:

lM =

∫ 1

0

‖γ(t)‖dt =

∫ 1

0

√
eTM(x(t))e dt (10)

For the surface remeshing of the tubular geometry, we however do not remesh in the 3D space but
remesh in the parametric space thanks to the conformal parametrization (see Figure 3). This enables
us to use any available 2D meshers, and in particular the bi-dimensional anisotropic mesh generator
BAMG [14] developed by F. Hecht and integrated within Gmsh. The length of the edge on the mesh
patch Sj can then be computed from the length in the parametric space e′ as follows: e = x,ue

′ so
that the length of the edge with respect to the mesh metric can be computed as follows:

lMx =

∫ 1

0

√√√√e′T
(
xT,uM(x)x,u

)︸ ︷︷ ︸
Mx′

e′ dt, (11)

where M(x)′ is the mesh metric that needs to be given to the anisotropic bi-dimensional mesh
generators. For our piecewise linear conformal mapping u(x), the derivatives x,u can be computed
quite easily (see [25] for more details).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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2.5. Quadrangular and hexahedral mesh generation

The first step for our hexahedral mesh generation algorithm is the generation of a quadrangular mesh
of the initial geometry. The presented algorithm of quadrangular mesh generation is an original
approach that combines a structured approach and an indirect unstructured approach. The mesh
patches that are created by our centerline-based cut operator can be classified into two types of
patches: annular patches and bifurcation patches. The annular mesh patches are then remeshed using
the structured approach, while the bifurcation patches (tri-bifurcations or higher order bifurcations)
are meshed with the indirect approach.

The structured meshes are build using an elliptic mesh generation method [32]. The elliptic grid
generator relies on the conformal mapping u(x) (Eq. (1)) of the physical domain onto the parametric
domain and on a second mapping that maps ξ(u) the parametric domain onto a periodic rectangular
computational domain (see top and mid Figs. in 7). At first, an initial algebraic structured grid is
generated in the computational domain and mapped in the parametric domain. The elliptic smoother
moves then the points in the parametric space by solving iteratively elliptic PDE’s (see [32] for more
details). Figure 7b) shows the final points (red points) in the parametric space as well as the resulting
mapped mesh in the physical space.

The indirect way of producing quad meshes comprises three steps: (i) The triangulation is tailored
with the aim of producing right triangles in the domain, using the infinity norm to compute distances
in the meshing process [26], (ii) the triangles are recombined into quads using the well known
Blossom algorithm of graph theory that computes the minimum cost perfect matching in a graph
in polynomial time [27], (iii) local and global mesh cleanup operations are performed, such as Guy
Bunin’s one-defect remeshing operation [5] to reduce irregular nodes in the mesh.

Once the quadrangular surface mesh has been generated, we generate an extruded boundary
layer mesh as well as an unstructured tetrahedral mesh of the lumen with pyramids as transition
elements [23]. We are currently also working on an optimal placement of the mesh vertices in the
lumen for the recombination of the tetrahedra into hexahedra [35, 34, 20], which will allow to also
generate hexahedral dominant meshes..

3. EXAMPLES

In this section, we have run our new automatic meshing algorithm on different medical
tubular geometries including cerebral aneurysm, carotid arteries and airways. Different types of
computational meshes are generated: isotropic tetrahedral meshes, anisotropic tetrahedral meshes
or mixed meshes. Some of the meshes include a vessel wall.

Timings as well as mesh qualities are given for the different meshes. The computations are
performed on a MacBook Pro 2.66GHz 4GB RAM Intel Core i7.

3.1. Isotropic tetrahedral computational meshes

Let us first look at isotropic tetrahedral computational meshes. We define two quality criteria: one
quality γT for the triangles T of the surface mesh [13] and one quality γτ for the tetrahedra τ of the
volume [13, 11].

γT = α
ρin
ρout

(12)

γτ =
2
√

6 ρ

h
. (13)

Here α is a constant, ρin is the radius of the inner circle/sphere of the mesh element, ρout is the
radius of the circumscribed circle/sphere of the element and h is the length of the longest edge of
the tetrahedron. With those definitions, the regular triangle/tetrahedron has γ = 1 and degenerated
(zero surface/volume) mesh element has γ = 0.

Table I shows the mean triangle and tetrahedra quality (γ̄T , γ̄τ ), the minimum tetrahedral quality
(γmin
τ ), the number of mesh elements # and the timings (in s) for the generation of different isotropic

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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Figure 7. Elliptic grid generation of a tubular mesh patch (the mesh patch corresponds to the blue mesh patch
of the aorta presented in Figure 2). a) Initial structured grid in computational domain (top), in parametric
domain (center) and in physical domain (bottom), b) final mesh points and quad mesh obtained with the

elliptic smoother in both parametric and physical domain.

tetrahedral meshes starting from tubular geometries (STL triangulations). The tubular geometries
are the aorta shown in Figure 2, the cerebral aneurysm shown in Figure 4 and the airways in
Figure 1. The meshes are obtained using the 2D Frontal-Delaunay§ algorithm [24] and the 3D
Delaunay algorithm. The timing for the computation of the centerline field (i.e the timing for the
computation of the centerline-based descriptors and operators described in section 2) is given. For
isotropic tetrahedral meshes, the only computed descriptor is the local radius and the two computed
operators are the cut-operator and the close-volume operator. The timings are also given for the 2D
and 3D mesh generation (including mesh optimization).

§It was indeed showed in [19] that optimal isotropic tetrahedral meshes (i.e with the highest mesh quality) can be
obtained by combining a conformal parametrization with a Frontal mesher.
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Geometry STL Surface mesh Volume mesh Time (s) Time (s) Time (s)
# γ̄T # γ̄T # γmin

τ γ̄τ C field 2D mesh 3D mesh
Aorta 4 103 0.73 12 103 0.97 58 103 0.21 0.69 0.08 0.78 2.26
Aneurysm 38 103 0.94 27 103 0.97 104 103 0.19 0.65 3.30 3.60 4.20
Airways 493 103 0.87 168 103 0.93 587 103 0.06 0.68 410.10 25.90 35.11

Table I. Mean and minimum quality (γ̄T , γ̄τ , and γmin
τ ), number of mesh elements # and timings (in s) for

the generation of isotropic tetrahedral meshes starting from tubular geometries.

Figure 8 shows the generated isotropic tetrahedral mesh for the lung based on the centerline field.
As can be seen, the mesh size is a function of the vessel radius, reducing therefore considerably the
total number of mesh elements compared with a uniform tetrahedral mesh.

(a) (b)

Figure 8. Isotropic tetrahedral mesh of the airways created using the centerline operators. The colors
correspond to the different mesh patches that have been created by the cut operator.

3.2. Mixed hexahedral/tetrahedral/pyramidal computational meshes

We first define a quality measure for quadrilateral elements. Consider a quadrilateral element q
and its the four internal angles αk, k = 1, 2, 3, 4. We define the quality ηq as:

ηq = max

(
1− 2

π
max
k

(∣∣∣π
2
− αk

∣∣∣), 0). (14)

This quality measure is η = 1 if the element is a perfect quadrilateral and is η = 0 if one of those
angles is either ≤ 0 or ≥ π. For the hexahedral mesh elements, we define the equi-skew angle mesh
quality ζH as a normalized measure of skewness ranging from ζH = 1 (best) to ζH = 0 (worst) that
depends on the angle formed between the faces’s edges of each cell in the mesh (ζH = 1 corresponds
to a perfectly equiangular hexahedra) [7]:

ζH = 1−max

[
θmax − 90

90
,

90− θmin

90

]
, (15)

where θmax and θmin are the largest and smallest angle in the hexahedra.
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Table II shows the minimum and quality (ηminq , η̄q, ζminH , and ζ̄H ), the number of mesh elements
# and the timings (in s) for the generation of the mixed hexahedral/tetrahedral meshes starting from
different tubular geometries. The parameters for the extruded hexahedral mesh are 4 layers of total
thickness δW = 0.2r(xc). For the volume elements, we only show the statistics for the hexahedra
of the mixed meshes. The timings presented in Table II are quite fast compared to timings for the
generation of block-structured hexahedral meshes (timings of several hours in order to generate
about 5000 tetrahedra in [7]).

Geometry Quad Surface mesh Hex Volume mesh Time (s) Time (s) Time (s) 3D
# η̄minq η̄q # ζmin

H ζ̄H 2D mesh 3D hex mesh mixed mesh
Aorta 3 103 0.21 0.85 11 103 0.28 0.83 7.9 0.6 2.3
Carotid 5 103 0.22 0.91 16 103 0.33 0.86 4.3 0.3 2.5
Cerebral 27 103 0.19 0.89 99 103 0.28 0.85 29.2 2.5 20.0

Table II. Minimum and mean quality (ηminq , η̄q , ζ̄minH , and ζH ), number of mesh elements # and timings
(in s) for the generation of mixed hexahedral/tetrahedral meshes starting from tubular geometries.

Figure 9. Quadrangular surface mesh of the cerebral arterial tree and hexahedral mesh of the arterial wall (in
yellow) of the carotid bifurcation. The blue mesh patches (tri-bifurcations or higher-order bifurcations) on
the right figures correspond to the quad meshes obtained using the indirect approach, while the red patches

correspond to the direct quad approach.

Mixed three dimensional meshes can be generated that are composed of a mixture of tetrahedra,
hexahedra and pyramids. Figure 10 show an image of a hybrid 3D mesh of the carotid.
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Figure 10. Mixed mesh of the carotid geometry. Hexahedra are in green, tetrahedra are in blue and pyramids
are in orange. The mesh is composed of 58,046 tetrahedra, 16,500 hexahedra and 4,236 pyramids.

3.3. Anisotropic tetrahedral computational meshes

The anisotropic meshes are build using first a 2D and then a 3D anisotropic mesh procedure.
From the initial triangulation, we first generate a new isotropic triangular surface mesh using
a conformal mapping of the surface mesh (see Eq. (1)). Then, given the mapped surface mesh
and the discrete metric tensor (11), the anisotropic surface mesh is generated in the parametric
space by the Bidimensional Anisotropic Mesh Generator Bamg [14] integrated within Gmsh. Then,
from this anisotropic surface mesh, an initial volume Delaunay-tetrahedral mesh is created using
Tetgen [31] without adding any new points on the surface mesh during the tetrahedralisation. The
initial tetrahedral mesh is then given as input to mmg3d [8, 9], a 3D Delaunay-based anisotropic
mesh adaptation library. This library, also integrated in Gmsh, produces quasi-uniform meshes with
respect to a metric tensor field using local mesh modifications and a Delaunay kernel to adapt the
initial mesh.

Given the metric tensorM (Eq. (3)), we define the following criteria [9] that measures how well
an anisotropic tetrahedron matches the metric specification, both in terms of size (edge lengths) and
of shape (aspect ratio) :

Qτ =

(∑6
i=0 e

T
i M̄ei

)3
Vτ
√
det(M̄)

. (16)

Here Vτ is the volume of the tetrahedron, M̄ is the average metric of the tetrahedron, and ei are the
edges of the tetrahedron. With this definition Qτ ∈ [1,+∞], with a high quality value indicating a
degenerated tetrahedron. In numerical simulations, optimal meshes should have more than 90% of
the tetrahedron with a quality measure better than 3, i.e 1 < Qτ < 3 [9, 1].
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In addition, we define an efficiency index τ that provides a single scalar value to evaluate how
well the tetrahedral mesh complies with the metric requirements:

τ = exp

(
1

ne

∑
1<i<ne

lM(ei)

)
,

{
lM(ei) = lM(ei)− 1 if lM(ei) < 1
lM(ei) = l−1M (ei)− 1 otherwise (17)

where ne denotes the total number of mesh edges and the edge length lM(ei) is given by Eq. (10).
Optimal meshes have an efficiency index τ close to the optimal value of one. In numerical
simulations, a value of τ > 0.80 is considered as an acceptable lower bound [9, 1].

Table III shows the quality of different anisotropic tetrahedral meshes together with meshing
timings. We present the mean quality index Q̄τ , the percent of elements that have a good quality
measure 1 < Qτ < 3, as well as the efficiency index τ . The geometries are STL triangulations of
three different arteries trees: an abdominal aorta and a cerebral aneurysm described in table I as
well as an arterial bypass¶. For the different examples, we have chosen a boundary layer thickness
δ = 0.3r(xc), a mesh size normal to the wall h0n = δ/20, a boundary layer growth ratio r = 1.3 and
a smoothing ratio β = 1.5.

Figure 11 shows the surface and a cut of the volume mesh of the anisotropic mesh of the geometry
of the aneurysm presented in the left Figure 4 and Figure 12 shows the surface and a cut of the
volume mesh of the anisotropic mesh of the geometry of the bypass.

Geometry Volume mesh Time (s)
# Q̄τ Qmin

τ 1 < Qτ < 3(%) τ 2D mesh 3D mesh
Aorta 323 103 1.6 11 0.98 0.836 7.2 96
Aneurysm 477 103 1.5 17 0.96 0.821 17 145
Bypass 342 103 1.5 12 0.97 0.829 11 67

Table III. Mean and minimum quality (Q̄τ , Qminτ ), efficiency index τ , number of mesh elements # and
timings (in s) for the generation of anisotropic tetrahedral meshes starting from the tubular geometries.

(a) (b) (c)

Figure 11. Anisotropic tetrahedral mesh of the aneurysm.

4. CONCLUSION

We have presented a new automatic meshing algorithm for the generation of computational meshes
from a segmented tubular geometry. The proposed methodology is based on different centerline-
based descriptors and operators.

¶This geometry has been downloaded from the simbios web site https://simtk.org/frs/download.php?
file_id=183.
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Figure 12. Magnified views of the anisotropic tetrahedral mesh of the bypass.

Different type of computational meshes can be generated with this method: isotropic tetrahedral
meshes, anisotropic tetrahedral meshes or mixed hexahedral/tetrahedral meshes as well as boundary
layer meshes for the lumen wall. The mesh size field is function of the centerline-based descriptor.

Besides the original centerline-based meshing algorithms, two important contributions are
included in this paper:

• A subtle control on the tangent and normal mesh sizes for the generation of anisotropic CFD
boundary layer meshes.

• A flexible and fast approach for hexahedral mesh generation. The proposed approach relies
on the generation of a quadrangular surface mesh that combines a structured elliptic grid
generator together with an indirect quadrangular meshing approach. Structured hexahedral
meshes are then created for the vessel wall and connected to the tetrahedra of the lumen with
pyramids.

We are currently working on several hexahedral meshing algorithms that will enable us to
generate also dominant hexahedral meshes in a close future using the presented method for
hexahedral mesh generation.

The presented automatic meshing algorithm is implemented in the open-source mesh generator
Gmsh [13] and examples can be found on the Gmsh wiki‖.
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