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SUMMARY

This work describes an automatic approach to recover a high quality surface mesh from low-quality
or oversampled inputs (STL-files) obtained from medical imaging through classical segmentation
techniques. The approach combines a robust method of parametrization based on harmonic maps [1]
with a recursive call to a multi-level edge partitioning software. By doing so, we are able to get rid
of the topological and geometrical limitations of harmonic maps. The overall remeshing procedure
is implemented, together with the finite element discretization procedure required for computing
harmonic maps, in the open-source mesh generator Gmsh [2]. We show that the proposed method
produces high quality meshes and we highlight the benefits of using those high quality meshes for
biomedical simulations. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the biomedical field geometrical data is acquired through medical imaging techniques such
as CT scan or MRI. The data is then usually given to end-users as a STL triangulation that
comes as the output of a surface reconstruction algorithm applied to the point cloud obtained
from the medical images [3]. Those generated STL triangulations can serve as input for most
volume meshing algorithms [4, 5]. Yet, those STL triangulations are generally oversampled
and of very low quality, with poorly shaped and distorted triangles. This is still to date a
major bottleneck in the domain of biomedical computations since the quality of the mesh
impacts both on the efficiency and the accuracy of numerical solutions [6, 7]. For example,
it is well known that for finite element computations, the discretization error in the finite
element solution increases when the element angles become too large [8], and the condition
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number of the element matrix increases with small angles [9]. It is then desirable to modify
the initial surface mesh to generate a new surface mesh with nearly equilateral triangles or
with a smooth gradation of triangle density based on the geometry curvature. This procedure
is called remeshing.

There exist mainly two approaches for surface remeshing: mesh adaptation strategies
[10, 11, 12] and parametrization techniques [13, 14, 15, 16, 17, 18]. The mesh adaptation
strategies belong to the direct meshing methods and use local mesh modifications in order
both to improve the quality of the input surface mesh and to adapt the mesh to a given mesh
size criterion. The parametrization techniques belong to the indirect meshing approach. The
initial 3D surface mesh is first parametrized onto a 2D planar surface mesh; the initial surface
can then be remeshed using any 2D mesh generation procedure by subsequently mapping the
new mesh back to the original surface.

When a parametrization of the surface is available, it is usually better to use it for remeshing.
Indeed, when a parametrization is available, ensuring that the surface mesh has the right
topology is trivial. Also, as the medical geometries are often highly oversampled and of very
poor quality, the numerous sampling operations are much more efficient in the parameter plane
than in 3D space.

In a recent paper [1] we have introduced an efficient approach for high quality remeshing
of surfaces based on a parametrization technique. The approach uses a discrete finite element
harmonic map to parametrize the input triangulation onto a unit disk. By combining it with
a local cavity check algorithm that enforces the discrete harmonic map to be one-to-one, we
came out with a robust method for remeshing that is advantegeous compared with mesh
adaptation methods. However, as it was highlighted in [1], there are two important limitations
of harmonic maps, namely limitations on the genus and the geometrical aspect of the surface.
Indeed, to be able to parametrize the triangulation onto a unit disk, the triangulation should
be homeomorphic to a disk, i.e have a genus zero with at least one boundary. Besides, as the
solution of harmonic maps tends exponentially to a constant, the triangulation should have a
uniform geometrical aspect ratio to prevent non distinguishable coordinates.

In this paper, we present a robust and automatic way to overcome the topological and
geometrical limitations of harmonic maps. The presented algorithm combines a discrete
harmonic mapping with a multi-level edge partitioning software that recursively partitions
the triangulation into a small number of charts that satisfy the topological and geometrical
constraints. We show that our method renders high quality meshes and highlight the benefits
of using those high quality meshes for cardiovascular and bone biomechanical simulations.

2. MESHING WITH HARMONIC MAPS
The key feature of our remeshing algorithm presented in [1] is to define a map that transforms
continuously a surface S ∈ R3 into a unit disk S ′ embedded inR2 [19, 20]. The parametrization
should be a bijective function u(x):

x ∈ S ⊂ R3 7→ u(x) ∈ S ′ ⊂ R2. (1)
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QUALITY MESHING BASED ON STL TRIANGULATIONS FOR BIOMEDICAL SIMULATIONS 3

Such a parametrization exists if the two surfaces S and S ′ have the same topology, i.e are both
zero genus surfaces (G = 0) and have at least one boundary (NB ≥ 1)†. When the surface S
is a triangular mesh as in the case of an STL file, the genus can be easily computed from the
Euler-Poincare formula:

G =
−NV +NE −NT + 2−NB

2
. (2)

where NV , NE , and NT are respectively the number of vertices, edges and triangles.
Harmonic maps have been chosen for the parametrization [21, 22], by solving one Laplace

problem for each coordinate:
∇2u = 0, ∇2v = 0, (3)

with appropriate Dirichlet boundary condition for one of the boundaries ∂S1 of the surface S,

u(l) = cos(2πl/L) , v(l) = sin(2πl/L), (4)

and with Neumann boundary conditions for the other boundaries. In (4), l denotes the
curvilinear abscissa of a point along the boundary ∂S1 of total length L.

The discrete harmonic map is obtained through a finite element formulation of the Laplace
problem (3)–(4) on the STL triangulation. The finite element solutions provide to each internal
vertex of the original triangulation x its local coordinates u and v. However, as shown in [1] the
solution of the mapping becomes exponentially small‡ for vertices located away from ∂S1. As
a consequence, local coordinates u and v of those far away vertices might numerically become
indistinguishable (see the zoom in Fig.1). To prevent this, the geometrical aspect ratio of the
surface:

η =
H

D
(5)

should be smaller than 4. Indeed we can show that η = 4 corresponds to an area of mapped
triangles of about r2i = 10−10 (see Eq. 23 and Fig. 10c in [1]). In (5), H is the maximal distance
(computed on the 3D surface S) of a mesh vertex to the boundary ∂S1 and D is the equivalent
diameter of the boundary ∂S1.

Figure 1 shows both an initial triangular mesh of S and its map onto the unit disk. The
surface S results from the segmentation of an anastomosis site in the lower limbs, more precisely
a bypass of an occluded femoral artery realized with the patient’s saphenous vein. The unit
disk D contains two holes that correspond to the boundary of the femoral artery ∂S2 and the
saphenous vein ∂S3 on which we have imposed Neumann boundary conditions.

Once the parametrization is computed, we use standard 2D anisotropic mesh generation
procedures onto the unit disk, with the aim of producing a mesh in the real 3D space that has
controlled element sizes and shapes. In order to control the surface element sizes, we define an
isotropic mesh size field [2] δ(x) that is a function that gives the optimal mesh edge length at
point x. In the examples that will be presented, the mesh size field is chosen to be either a
constant or varies according to the curvature of the geometry.

†For example, a sphere has G = 0 and NB = 0 and a torus has G = 1 and NB = 0.
‡In principle, the solution becomes constant far from the boundary, this constant being the average of the
solution on the boundary. Yet, the average of the solution on the boundary being zero, the solution goes to
zero far from the boundary.
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Figure 1. STL triangulation of an arterial anastomosis (G = 0, NB = 3, η = 5) and its map onto the
unit circle (left) and mapped mesh on the unit circle (right). As the geometrical ratio of the initial STL
triangulation is higher than 4, the mapped triangles become very small (see zoom) in the parametric

unit disk.

3. AUTOMATIC QUALITY REMESHING

In the previous section we put to the fore the topological and geometrical limitations of
harmonic maps. To sum up, for the proposed discrete harmonic maps we need:

i ) G = 0;

ii ) NB ≥ 1;

iii ) η < 4.

The first condition can be verified using Eq. (2); the second condition can be checked by
looking simply at the topology of the mesh. The third condition is less trivial to assess.

In the computer graphics community, people overcome all three conditions simultaneously
by using a partition scheme based on the concept of Voronoi diagrams [22] or inspired by
Morse theory [18, 23]. The resulting mesh partitions are area-balanced patches that satisfy
the three conditions. However, this approach results in a large number of patches and hence a
large number of interfaces between those patches, which is not desirable.

We propose in this paper a fast and automatic way to overcome both topological and
geometrical limitations of harmonic maps. The idea is to combine an harmonic map with
a multilevel edge partitioning softwares such as Chaco [24] or Metis [25] to partition
recursively the triangulation into a minimal number of partitions that satisfy the topological
and geometrical conditions. Multilevel methods are attractive since they reduce the costs of
spectral partitioning methods while still generating high quality partitions. These work on
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the connectivity graph of the mesh, but instead of trying to split this directly, the graph is
first condensed through a number of levels. The condensation is achieved through clustering
together vertices that are close together’ to produce a graph with fewer vertices. New edges
between the clusters are weighted to reflect the number of edges that existed in the larger
graph. By using several levels of condensation a much smaller graph can be obtained that is
easily partitioned by a method such as spectral bisection. This partitioning information can
then be transfered up through the levels to the original graph.

The automatic procedure for a uniform remeshing a triangulation S with prescribed mesh
size δ is illustrated in Figures 2 and 3 and reads as follows:

1. Check conditions (i)-(iii). If those conditions are not satisfied, recursively split the mesh
with the multi-level partitioning software until satisfied. The geometrical aspect ratio η
is computed approximately by using the ratio between the maximal size of the bounding
box of the mesh partition and the maximal size of the bounding box of the boundaries
∂S of the mesh partition [26] (see illustration in Fig. 3(1)) ;

2. Remesh the lines that are the boundaries of the triangulation and the interfaces between
the mesh partitions (see the interfaces between colored patches in 2a) that are represented
by highlighted white lines in Fig.2b); Those lines are defined as model edges and divided
into N parts as follows: N =

∫ L

0
||x,t|| /δdt. The remeshed lines are embedded in the

final mesh shown in Fig. 2c).

3. Compute the harmonic mapping for every mesh partition as explained in the previous
section. If the boundary is composed of several parts ∂Si, assign the Dirichlet boundary
conditions (4) to the closed boundary that has the largest bounding box.

4. Use standard surface meshers to remesh every partition in the parametric space and map
the triangulation back to the original surface.

5. If a volume mesh is needed, generate a volume mesh from the new surface mesh using
standard volume meshing techniques.

In our algorithm, the bounding boxes are oriented bounding boxes that are computed with
the fast Oriented bounding box HYBBRID optimization algorithm presented in [26] which
combines the genetic and Nelder-Mead algorithms [27].

The automatic procedure is implemented within the open source mesh generator Gmsh [2].
We show a simple example of how to use it. We suppose that we have an initial surface mesh
and write the following geometry file ”remesh.geo”:

//Merge the STL triangulation
Merge "skull.stl";

// Remesh the edges (if any), and faces with the presented algorithm
Compound Surface(100) = {1};

// Create a volume and mesh given the new surface mesh
Surface Loop(2) = {100};
Volume(3) = {2};
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a) b) c)

Figure 2. Remeshing algorithm. a) Initial triangulation (G = 2, NB = 0) that is cut into different
mesh partitions of zero genus, b) Remesh the lines at the interfaces between partition, c) Compute
harmonic map for every partition and remesh the partition in the parametric space (u(x) coordinates

visible for one partition).

H

D

a) b) c)

Figure 3. Remeshing algorithm. a) Initial triangulation (G = 0, NB = 3, η = H/D = 16) that is cut into
different mesh partitions of uniform geometrical aspect ratio, b) The harmonic map is computed for
every partition (u(x) coordinates visible for one partition) c) Remesh every partition in the parametric

space. The mapped initial triangulation is shown for the partition visible on the middle image.

Other examples can be found on the Gmsh wiki: https://geuz.org/trac/gmsh (username:
gmsh, password: gmsh) .
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4. RESULTS

4.1. High quality surface and volume meshes

We have run our computational algorithm on a variety of medical geometries of arbitrary genus
and complexity. Fig. 4 illustrates a uniform remeshing of respectively a skull, an upper jaw
and a hemipelvis. The top figure shows the remeshing of a human skull, the middle figures
the remeshing of an upper jaw that is oversampled (116k vertices) and the lower figures the
remeshing of an initial poor quality mesh of an hemi-pelvis. None of those initial triangulations
satisfy the topological conditions: the skull has genus G = 2, the jaw has genus G = 0 but has
NB = 0 and the pelvis has G = 1 and NB = 0.

The quality of an isotropic mesh is evaluated by computing the aspect ratio of every mesh
triangle as follows [2]:

κ = α
inscribed radius

circumscribed radius
= 4

sin â sin b̂ sin ĉ

sin â+ sin b̂+ sin ĉ
, (6)

â, b̂, ĉ being the three inner angles of the triangle. With this definition, the equilateral triangle
has κ = 1 and degenerated (zero surface) triangles have κ = 0.

Fig. 5 shows the quality histogram for the initial triangulation of a foot and the remeshed
geometry. As seen in fig.5, the mean κ̄ and minimum quality κmin of the new mesh are both very
high: κ̄ = 0.94, κmin = 0.62. This mean quality measure was found to be constant (±2%) for
all examples and hence independent of the initial triangulation and the mesh density. Volume
tetrahedral meshes can then be created from those surface meshes. In order to measure the
quality of the tetrahedral elements, we define another quality measure γ based also on the
element radii ratio [2, 28]:

γ =
6
√

6V
SF LE

,

V being the volume of the tetrahedron, SF being the sum of the areas of the 4 faces of the
tetrahedron, and LE being the sum of the lengths of the 6 edges of the tetrahedron. This γ
quality measure lies in the interval [0, 1], an element with γ = 0 being a sliver (zero volume).
When creating volume meshes from surfaces that have been remeshed with our algorithm,
we obtain also quite constant γ qualities, i.e γmin = 0.25 ± 10% and γ̄ = 0.7 ± 10%. This
is much better than the gamma quality of volumes meshes created from STL triangulations.
Indeed the quality of those volume meshes is often very poor, with elements being small slivers
γmin < 1.e−5 that will hinder or event prevent the convergence of the numerical method.

The time necessary to generate with our algorithm a new surface mesh less is less than 100 s
for 106 elements.

4.2. Quality meshing for biomedical simulations

The two first biomedical simulations concern blood flow simulations. In the first example,
blood flow in a distal anastomosis of a bypass is considered. While this problem has often
been studied in-vitro in simplified geometries [?, ?, ?], the simulation of blood flow in in-
vivo complex geometries is of great interest when one wants to focus on the patient-specific
aspect [?]. As this is not the goal of this study, we refer the reader to the cited references
for detailed hemodynamical analysis. We intend to illustrate in the following test case that in
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8 E. MARCHANDISE

Figure 4. STL triangulations obtained from medical images (Left) that have been automatically
remeshed with our automatic remeshing algorithm (Right).

real and complex geometries, a high-quality mesh is required in order to ensure the numerical
convergence of the simulation. Identical conclusions have been reached in computational studies
related to other biomedical applications and considering the effects of various meshing style:
Vinchurkar et al [?, ?] have shown the performances of different types and qualities of meshes in
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Figure 5. Plot of the quality histogram of both the STL triangulation and the remeshed surface of a
scanned foot.

the complex branching geometries of the respiratory system; Liu et al [?] compared simulations
in the total cavopulmonary connection using structured and unstructured meshes; Ethier and
Prakash [?] studied a mesh convergence study of blood flow in a coronary artery model.

In the two following test cases, blood flow is governed by the incompressible Navier-Stokes
equations for a Newtonian fluid. We use an implicit pressure stabilized finite element method
that has been shown to be robust, accurate and stable [29]. The linearized system is solved
by using a GMRES solver with a relative convergence tolerance of 10−12. The fluid properties
of blood are taken to be ρ = 1060 kg/m3 for the density and µ = 3.5Pa.s for the dynamic
viscosity.

The first test case studies steady blood flow at Reynolds Re = 900 (based on the inlet
diameter and average inlet velocity) in a veinous anastomosis of an occluded femoral artery
(Figure 6) [30]. The anastomosis is segmented out of raw image data from a patient that
underwent lower-limb bypass surgery. Two surface meshes are produced, one from the initial
STL triangulation and one using the remeshing procedure based on harmonic maps. Those
surface meshes then serve as input for the generation of two volume meshes of about 104

tetrahedra (an STL based and a remeshed based volume mesh). Table I shows the quality of
these two surface and volume meshes: the remeshed mesh presents higher minimal and mean
qualities that enables the flow solver to converge better (see Fig. 6).

Mesh Surface quality Volume quality
κmin κ γmin γ

STL 0.0033 0.821 0.0019 0.563
Remeshed 0.6400 0.949 0.2550 0.677

Table I. Quality of the surface and volume meshes.

The simulation is run with a constant flow rate at the inlet (Q = 75 ml/min), a no-slip
boundary condition at the walls and a constant pressure boundary condition on the outlet
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surface (p = 50 mmHg). Figure 6 shows the convergence rates for each of the two volume
meshes. Figure 6 shows that the element quality has a significant impact on the convergence
rate of the solution procedure. Indeed, the simulation on the mesh obtained from the STL
converges at 1.e−7, while the remeshed mesh gives results that are two times more accurate.
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Figure 6. Blood flow simulation in an arterial bypass. The left figure shows the streamlines (zoom
near the anastomosis) and the right figure shows the residual decrease for the two different volume

meshes.

The next example studies the flow in a simplified aortic arch. The STL triangulation was
found on the INRIA web site§. Accurate and converged numerical simulations are mandatory
since it has been shown that the flow patterns and the locations of low wall shear stress (WSS)
correspond with locations of aneurysm formation in the descending aorta [31, 32]. The wall
shear stress is defined as the norm of the shear stress at the wall:

WSS = ‖~tw‖ = ‖~t− (~t · ~n) · ~n)‖, with ~t = µ
(
∇~u+∇~uT

)
· ~n. (7)

For the numerical simulation, we apply simple boundary conditions: a parabolic velocity
profile at the inlet (heart) and zero natural pressure boundary conditions at the outlets
(innominate artery, left common carotid artery, left subclavian artery and descending aorta)
and a zero velocity (no-slip) on the vessel walls. We consider a stationary flow at Reynolds
Re = 450 and different meshes: isotropic volume meshes of respectively 28K, 160K and 466K
tetrahedra and an adapted anisotropic mesh that has approximately 20K. We fist compute
an isotropic surface mesh with our remeshing algorithm and then produce two different types
of volume meshes: (i) isotropic volume meshes of different prescribed mesh sizes, (ii) adapted
anisotropic volume meshes and (ii) a boundary layer mesh obtained by extrusion of the surface
mesh over a number of layers (5 layers in the boundary δ = 1/

√
Re). Adaptive refinement in

the boundary with either anisotropic metric fields or boundary layers is indeed attractive
[34, 35, 36] to increase the solution accuracy in the region of interest (at the wall) and

§http://www-c.inria.fr/Eric.Saltel/saltel.php
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this way decrease the load on the solver by reducing the number of finite elements used.
With the presented approach of harmonic map, we do have a parametric description of the
initial triangulation that enables us to use anisotropic mesh adaptation libraries such as our
open source MadLib library [33]. This library aims at modifying the initial mesh to make it
comply with criterions on edge lengths and element shapes by applying a set of standard mesh
modifications (edge splits, edge collapses and edge swaps, ...). An anisotropic field based on the
distance to the wall and the curvature can then be defined in order to generate boundary layer
meshes. In the example presented in Fig.7c), we prescribe a small size with a linear growth
in the normal direction to the wall, and three times a larger size is prescribed in the tangent
directions. The final mesh metric field is built from those resulting sizes and directions. It
should be noted that a volume mesh was also produced from the STL triangulation but this
volume mesh was of too low quality to obtain a convergence of the numerical simulation
(γmin = 1.5e−5 and γ̄ = 0.45).

Figure 7 shows the initial STL triangulation, a remeshed isotropic surface mesh, and a mesh
cut of the volume anisotropic mesh. As can be seen, initial STL triangulation is faceted and
the horizontal structure of the CT slices are visible.

ı̈¿ 1
2 ı̈¿ 1

2

View b),c)

View
b),c)

a) b) c)

Figure 7. Aortic arch meshes: a) Initial STL triangulation (top) and remeshed surface (isotropic mesh
size), b) Anisotropic volume mesh cut created from the remeshed surface with MAdLib, c) Boundary

layer volume mesh.
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Figure 8. Blood flow simulation in an aortic arch. The left figure shows the WSS distribution and the
right figure the WSS along the circumference at section A − A′ for different meshes for a constant

inlet flow rate. The zero angle corresponds to the location A′.

Figure 8 shows the WSS values computed for different meshes at section A−A′. We selected
section A−A′ since this section intersects the regions of low and high WSS. For this section,
the WSS values vary in the azimuthal direction, the zero angle corresponding to the location
A′. As can be seen in Fig.8, the high quality isotropic volume meshes converge well towards an
azimuthal WSS distribution. The WSS for the anisotropic mesh exhibits more numerical noise
that is due to the velocity gradient computations involved in (7) that are less accurate for highly
anisotropic meshes [34, 35, 36]. Meanwhile, the mean values (max and min WSS) converge
towards the one obtained with the finest isotropic mesh within a smaller computational time
(mesh of only 20K). The boundary layer volume mesh provides less oscillatory results and
show also convergence towards the finest isotropic mesh for a reduced number of elements
(50k versus 1.4M tetrahedra).

The last biomedical computation is the stress computation on a hemipelvis. The initial
triangulation (STL file) of the pelvic bone is obtained from a segmentation procedure of a
sawbone model that was scanned (CT scan with 1.25 mm thickness). Several isotropic surface
meshes are obtained with our automatic remeshing algorithm for different mesh refinements.
We analyze the influence of the mesh quality on the accuracy of the solution : 5 meshes
obtained with the uniform remeshing algorithm having respectively 420k, 270k, 70k, 20k and
5k triangles, 2 meshes that are adapted to the curvature with 54k and 8k triangles and 3 STL
triangulations of 10k, 5k and 2k triangles (see Fig. 9). The 3 different STL files are obtained
with the meshLab software by refining the triangles or collapsing the edges of the initial STL
file of 5k triangles. As expected, the mean quality is κ̄ = 0.94 for the remeshed pelvis while
κ̄ = 0.66 for STL triangulations. The curvature adapted meshes are computed by defining the
mesh size δ as follows:

δ =
2πR
Np

, with R =
1
κ

(8)

where κ is the curvature that is computed from the initial nodes of the STl triangulation with
the algebraic point set surface (APSS) method that is based on the local fitting of algebraic
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spheres [?] and Np is the number of points chosen for the radius of curvature (Np = 15).

View

b,c

a) b) c)

Figure 9. Different meshes used for the mesh convergence analysis. a) Triangulation on which a
curvature κ is computed, b) isotropic remeshed pelvis (δ = 0.1) and c) Curvature-dependent remeshed

pelvis (δ given by Eq.(8)).

Figure 10 shows the boundary conditions used for the finite element computation. The finite
element model is constrained at the sacro-iliac joint and a symmetry boundary condition is
applied on the pubic-symphysis. The pelvis is subjected to a 3D load case representative of
a single leg stance. Taking a body weight equal to 1000N, the resulting surface traction force
acting on the acetabulum surface is 0.7MPa. As different meshes are used, the elements
forming the boundaries are selected inside a sphere (for the acetabulum and the sacrum) and
on one side of a plane (for the pubis) intersecting the pelvis. These fixed boundary conditions
are more representative of in vitro experimentation than in vivo environment but are realistic
enough for this analysis [37].

In order to put to the fore the effect of the surface mesh on the behavior of the numerical
solution, we analyze the stresses in the cortical bone by using shell elements on the surface
of the pelvis. This is well adapted for this analysis because the pelvis has a cortical shell
that undergoes most of the stresses. We model this cortical surface layer with a homogeneous
shell section of uniform thickness 2mm, an isotropic Young modulus E = 18000N/mm2 and
a poisson ratio of ν = 0.3 [38, 39].

The simulations are computed wih the finite element solver Abaqus with linear finite
elements. Figure 11 shows the distribution of the Von-Mises stresses developed in the cortical
bone with the finest isotropic mesh. The stresses are concentrated around the cotyle and toward
the fixed boundary condition at the sacro-iliac joint. The maximum stresses are obtained
around the cotyle for the fine meshes while the STL meshes produce higher stresses located
above the illium. These are local stress concentrations that appear in small elements, where
no significant stress should be present.

To determine the influence of the mesh quality on grid convergence, we consider different
isotropic surface meshes and STL meshes and evaluate an absolute error measure of the
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Figure 10. Finite element computations in the cortical shell. The left figure shows the boundary
conditions. The right figure shows a non-uniform mesh that is refined in the areas of high curvatures.

displacement field between each of those meshes and the finest isotropic mesh computed with
linear shell elements (420k elements). The total error εtotal for a mesh is given by taking the
root mean square of the relative error εi for each vertex i of the reference mesh :

εtotal =
∑N

i=0 εi
N

, εi =
√
ε2i1 + ε2i2 + ε2i3, where εij = |uij − ūij | , (9)

where N is the number of nodes of the reference mesh, uij is the jth component of the
displacement for the ith reference mesh vertex and ūij is the interpolation of the jth component
of the displacement computed in the considered mesh at the location of the ith vertex. As 3D
surface meshes do not coincide, the interpolation is computed at the projection on the closest
surface element in this element.

Figure 11 shows the grid convergence for the different meshes, where we can clearly see
the influence of the mesh quality on the convergence. The theoretical convergence for linear
shell elements is of order O(h2) and is recovered with our high quality meshes while the STL
triangulations present a much lower convergence O(h0.2) as well as a higher error for the same
number of nodes.
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Figure 11. Von mises stress distribution in the cortical shell computed with the finest isotropic surface
mesh (Left) and influence of the mesh quality on the numerical solution (Right).

5. CONCLUSION

In this work, we have presented a fully automatic approach to recover a high quality surface
mesh from low-quality oversampled inputs (STL files) obtained via 3D acquisition systems.
The approach is original as it combines an efficient and robust parametrization technique
based on harmonic maps [1] with a multi-level edge partitioning algorithm that partitions the
mesh in a small number of partitions. With the present approach, we are able to remesh any
surface with any topological genus and with large geometrical aspect ratio such as arteries. We
showed that the remeshing procedure is highly efficient and produces high-quality meshes that
are suitable for finite element biomedical simulations. We have presented several biomedical
computations that quantify the influence of the mesh quality on the convergence behavior.
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