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ABSTRACT

This paper proposes a robust and effective approach to overcome a major difficulty associated to surface finite element
mesh generation: the handling surfaces with irregular (singular) parametrizations such as spheres, cones or other
surfaces of revolution produced by common Computer Aided Design tools. The main idea is to represent triangles
incident to irregular points as trapezoids with one degenerated edge. This new approach has been implemented in
Gmsh and examples containing thousands of surfaces with irregular points are presented at the end of the paper.
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1. INTRODUCTION

Computer Aided Design (CAD) systems are used ex-
tensively for industrial design in many domains, in-
cluding automotive, shipbuilding, and aerospace in-
dustries, industrial and architectural design, prosthet-
ics, and many more. Engineering designs are encapsu-
lated in such CAD models, which up to manufactur-
ing tolerances exactly represent their geometry. While
the engineering analysis process begins with such CAD
models, the predominant method of analysis (the finite
element method) requires an alternative, discrete, rep-
resentation of the geometry: a finite element mesh.
In such a mesh, the CAD model is subdivided into
a (large) collection of simple geometrical shapes such
as triangles, quadrangles, tetrahedra and hexahedra,
arranged in such a way that if two of them intersect,
they do so along a face, an edge or a node, and never
otherwise.

Three-dimensional CAD models are represented on
a computer using a “Boundary Representation”
(BRep) [1]: a volume is bounded by a set of faces,
a face is bounded by a serie of curves and a curve is

bounded by two end points. The BREP is a discrete
object: it is a graph that contains model entities to-
gether with all their topological adjacencies. Then a
geometry is associated to each model entity. Figure 1
presents a moderately complex CAD model together
with its 3D mesh generated using Gmsh [2].

As an example, consider a model face F with its
boundary

∂F = {C1, . . . , Cn}.
Face F is topologically closed, i.e. ∂(∂F ) = ∅: each
endpoint of the bounding curves Cj is considered twice
in F , one time positively and one time negatively. The
geometry of a model face F is its underlying surface S
with its parametrization

x : A 7→ R
3, (u, v) 7→ x(u, v)

where A ⊂ R2 is a rectangular region [u0, u1]× [v0, v1].
A parametrization is said to be regular if ∂ux and ∂vx
are linearly independent:

∂ux× ∂vx 6= 0

for any u, v ∈ A. Points where ∂ux×∂vx = 0 are called
irregular or singular points of the parametrization. We



Figure 1: An Engine Block.

assume here that irregular points are isolated. Irreg-
ular points can occur for two possible reasons: (i) one
of the partial derivatives ∂ux or ∂vx is equal to 0 or
(ii) partial derivatives are parallel.

The underlying geometry of a face F is thus a para-
metric surface x(u, v). Yet, its domain is often smaller
than A: A is usually trimmed by boundaries Cj and
the geometry of the trimming curves are algebraic
curves cj(u, v) = 0 defined in the (u, v) plane of F .
Figure 2 shows an example of a trimmed surface.

Generating a triangular surface mesh of F consists in
generating a planar triangular mesh in its parameter
plane whose map through x(u, v) is a valid mesh in
R3 with triangles of controlled shapes and sizes.

A triangle is valid in the (u, v) plane when it is prop-
erly oriented, i.e. when its area is strictly positive. It
is indeed more complicated to assess that a triangle is
valid in R3. Assume a triangle (a,b, c) with its non
unit normal n = (b− a)× (c− a) and the normal to
the CAD surface at the centroid

(ut, vt) =
1

3
(ua + ub + uc, va + vb + vc)

of the triangle:

nCAD = ∂ux(ut, vt)× ∂vx(ut, vt).

We say that triangle (a, b, c) is valid if nCAD · n > 0.

In the example of Figure 2, the depicted trimmed sur-
face has no irregular points and the mesh generation
procedure is usually straightforward. In this specific
example, the anisotropic frontal-Delaunay approach
that is implemented in Gmsh [2] was used based on
the metric tensor

M =

(
‖∂ux‖2 ∂ux · ∂vx
∂ux · ∂vx ‖∂vx‖2

)
(1)

that is of full rank everywhere.

Surfaces with isolated irregular points are however
very common in CAD systems: spheres, cones and
other surfaces of revolution may contain one or two ir-
regular points. Mesh generation procedures are known
to be prone to failure close to irregularities. Con-
sider for example the parametrization of a sphere as
it is used to our best knowledge in every CAD sys-
tem. A sphere of radius R centered at the origin is
parametrized as

x(u, v) = R sinu cos v

y(u, v) = R sinu sin v

z(u, v) = R cosu

where u ∈ [0, π] is the inclination and v ∈ [0, 2π[ is the
azimuth. At the poles, i.e. when u = 0 or u = π,

∂vx = R(− sinu sin v, sinu cos v, 0) = (0, 0, 0)



Figure 2: Surface mesh of a model face. View of the mesh in the parameter plane (left) and on R3.

vanishes and this parametrization is irregular at the
two poles of the sphere.

In this paper, a new approach is proposed that allows
to generate meshes of surfaces with irregularities in an
efficient and robust fashion. At first, we explain in §2
why indirect surface mesh generation procedures be-
come fragile at the vicinity of irregular points. Then
in §3 and §5, we present the critical modifications to
standard meshing procedures that allow to address is-
sues related to irregular parametrizations. Examples
of CAD models with thousand of spheres and cones
are finally be presented in §7.

2. THE ISSUE OF MESHING SURFACES
WITH IRREGULAR

PARAMETRIZATIONS

Two main approaches exist for surface meshing. The
first approach, usually called the “direct approach” [3],
consists in generating the mesh directly in R3. Differ-
ent direct approaches have been proposed in the lit-
erature: advancing front methods [4, 5], octree based
methods [6, 7], methods based on local mesh modi-
fications [8, 9], methods based on restricted Voronoi
diagrams [10], ... Octree- and Voronoi- based methods
have in common the need to intersect a 3D object (an
octree or a Voronoi Diagram) with the surface that is
to be meshed. When an octree is used, the intersec-
tion of the octree with the surface is usually irregular
and local mesh modifications have to be performed in
order to obtain a quality mesh. On the other hand,
when the Voronoi diagram of the points is used, re-
covering edges (sharp features) of the surface is an
issue. Other direct methods generate triangles on the
surface without using any kind of 3D object. Advanc-
ing front methods and paving methods [11] add points
and triangle on the surface using a frontal approach.
Those methods handle sharp features without difficul-
ties and allow to generate quality meshes. Yet, such

methods are endowed with robustness issues (front col-
liding and 3D intersections of 2D objects). Some di-
rect approaches [8, 9] start from a “CAD” mesh and
modify it to produce a “computational” mesh with
elements of controlled shapes and sizes. The main dis-
advantage of such an approach is that it requires an
initial mesh. One may use STL triangulations pro-
vided by CAD modelers but those are not guaranteed
to be watertight on a whole CAD model and a complex
preprocessing step is usually required to fix holes and
T-juntions. Another issue is related to what could be
called an “isogeometric” argument: the final “compu-
tational” mesh and the inital “CAD” mesh are piece-
wise linear complexes that do not necessary cover the
same geometry. Modifying an existing surface mesh
using local mesh modification like vertex repositioning
leads to vertices located outside of the input geome-
try i.e. the “CAD” mesh. While meshing procedures
of this kind that actually ensure that the distance be-
tween the “CAD” and the “computational” mesh is
bounded, those are based on complex datastructures
and require to compute Haussdorff distances between
triangulations [12].

When mesh generation procedures have access to
parametrizations of surfaces, one can generate a pla-
nar mesh in the parametric domain and map it in 3D.
This surface meshing approach is called “indirect”. In
Gmsh, surface meshes are generated in the parameter
plane (u, v) and standard “off the shelf” anisotropic
2D meshers are used for generating surface meshes.
This is of course the main advantage of the indirect ap-
proach: a priori, no major coding effort is required to
go from planar meshing to surface meshing. This last
statement is of course a little bit too optimistic. En-
suring that a planar mesh is valid is trivial: all trian-
gles should be positively oriented. Now, if the surface
parametrization x(u, v) ∈ R3 is regular, then the map-
ping of the (u, v) mesh onto the surface is itself valid
because the composition of two regular mappings is



regular. For example, the very simple mesh of the pa-
rameter plane of the whole sphere presented in Figure
3 maps exactly the sphere as depicted in the bottom
part of Figure 3.

Here, the main issue is that we do not actually map
entire triangles onto the surface but only their corners.
The topology of the 2D mesh is simply “translated”
in 3D: straight sided triangles in the (u, v) plane be-
come straight sided triangles in 3D. Another “isoge-
ometric” issue thus appears in the indirect approach:
the mapping x(u, v) of a triangle in the (u, v) plane
is not equal to the straight sided triangle in R3. So,
a valid 2D triangle in the parameter plane does not
necessary produce a valid 3D triangle on the surface.
For example all the triangles in the parameter plane
in Figure 3 are mapped onto zero-area triangles in R3.
On the other hand, an invalid 2D triangle (i.e. with a
negative area) may be perfectly valid in 3D.

In ordre to illustrate those issues, Figure 4 shows the
example of the parameter space of a complete sphere.
An edge (a, b) where b is close to the north pole p
(in red) is considered. Edge (a, b) is used to form a
triangle (a, b, c) where c ∈ A = [0, 2π[×[0, π]. The
iso-lines that are presented are iso-values of triangle
qualities1: the particular point c drawn on the Figure
is the only one in the parameter plane leading to a
valid equilateral triangle in 3D. The grey zone in the
Figure corresponds to the locations of points c that
form invalid elements in 3D. Invalid elements in the
parameter plane (u, v) correspond to points above the
green line that passes through (a, b). It can be seen
that there exists a zone where triangles are valid in 2D
but not in 3D, and another zone where elements are
valid in 3D but not in 2D. Some interesting comments
can be made with respect to Figure 4:

• The blue line is the 3D geodesic between a and
b. This geodesic is far from being a straight line
in the parameter plane, especially when the edge
(a, b) is close to the pole (in red). Geodesics are
straight lines in the parameter plane when the
metric tensor M is constant (this is a sufficient
condition). We will see in the next section that
geodesics that are incident to an irregular point
are also straight lines, even though the metricM
has strong variations close to singularities.

• The point c in Figure 4 that corresponds to an
equilateral triangle (a, b, c) is always in the valid
zone i.e. the zone where triangles are both valid
in 2D and 3D. More generally, good quality trian-
gles can always be formed in the parameter plane,
even when the metric is very distorded.

1We use as quality the ratio 2 r
R

between the inner-
radius r and the circumradius R multiplied by 2 in order
to have a quality equal to one for the equilateral triangle.

• The zone that is valid in 2D but not in 3D is the
most problematic for mesh generation algorithm
that work in the parametric plane. Hopefully,
this zone only contains points c for which trian-
gles (a, b, c) are of bad quality.

It is difficult to generalize those three comments to
general surfaces but our experience (through numeri-
cal experiments) shows that they do indeed hold.

The main question can thus be formulated as follows:
assuming a surface with a parametrization that may
contain isolated irregular points, can we always find a
valid 2D mesh that corresponds to a valid 3D mesh?

When we started to think about version 4 of Gmsh, our
answer to that question was tending to be no, at least
using the current implementation of the surface mesh
generators. The typical issue that was encountered at
the time is illustrated on Figure 5. The right part of
the Figure represents the mesh in the parametric plane
(u, v) while the right part of the Figure represents the
surface mesh in R3.

In Figure 5, the surface S is a sphere. Points like c or
g (in green) are classified on model face F . Points like
d or f (in pink) are classified on regular model edges
that bound F while points like b and e are classified on
the seam of F (in order to have ∂(∂F ) = ∅ some CAD
systems like OpenCASCADE close periodic surfaces
with a seam). Point b is a pole of the sphere: it is a
irregular point. The parametric mesh is perfecly valid
i.e. triangles cover exactly A without overlap. Yet,
even though triangle (b, c, d) is correctly oriented in
the parametric plane, it is invalid in R3. We are here
in the situation of Figure 4 where point a is above the
geodesic between c and d in the parameter plane. One
single edge flip could potentially make the 3D mesh
valid and of better quality: exchanging edges (c, d)
and (a, b) fixes all issues. Yet, doing so makes the
parametric mesh invalid. With the set of points that
is depicted in Figure 5, we found it impossible to build
a quality mesh in R3 that is valid in the (u, v) plane.

Contrary to what one might think, the main issue here
is not the fact that the metric tensor (1) is of rank 1 at
irregular points and very distorted around it. In the
context of mesh generation, geometrical queries like
the evaluation of the metric tensor M are never done
at irregular points; and anisotropic mesh generators
are able to generate meshes for smooth metric fields
even though they are very distorted. The mesh gen-
eration issue that arises here is essentially related to
triangles (e.g. (b, c, d) in the Figure) and edges that
have one vertex like b that corresponds to an irregular
point of the parametrization.

Another minor issue will be fixed by our new approach.
The existence of one degenerated mesh edge connect-
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Figure 3: A very simple mesh (left) of the parameter plane of a sphere and (right) its mapping through spherical coordinates.

ing points b implies the existence of an irregular tri-
angle (d, b, b) that has one degenerated edge. This
triangle can be eliminated in a post processing stage
but its presence is quite ennoying in the mesh genera-
tion process: computation of circumcircles, edge flips
(flipping edge (b, d) does not change the mesh), ...

3. GEODESICS OF SURFACES OF
REVOLUTION

Most of the CAD surfaces that have irregular points
are surfaces of revolution. Consider a surface of revo-
lution with respect to the z-axis and suppose that the
generating curve is

c(v) = (f(v), 0, g(v)) , v ∈ [0, T ].

The parametrization of the surface is given by

x(u, v) = (f(v) cos(u), f(v) sin(u), g(v)), (2)

(u, v) ∈ [0, 2π[×[0, T ]. Geodesics of surface of revolu-
tion, even though their forms are not trivial (see for
example the blue line of Figure 4), have specific prop-
erties [13]. One interresting property of surfaces of rev-
olution is that meridian curves u = cste are geodesics.

Surfaces of revolution may have irregular points: if
f(0) = g(0) = 0 in (2), then x(u, 0) = (0, 0, 0) for every
u. The origin of the axis belongs to the surface and is
thus an irregular point as defined above. Let us now
look at the parameter plane (u, v) corresponding to a
surface of revolution with a irregular point at u = 0.
Figure 6 gives an illustration of that situation. The
thick red line u = 0 is mapped onto one single point
x = (0, 0, 0). Thus, edges (g, b) and (g, b′) have the
same end-points in R3 but the only geodesic between
those two points is the meridian (g, b).

This simple result allows us to critically examine Fig-
ure 5: edges like (c, b), (g, b) or (d, b) are far from being
geodesics and are thus far from the their correspond-
ing straight edges in R3, as depicted in Figure 7. On
the other hand, edge (b, f) is close to be a geodesic
and its 3D representation is close to the correspond-
ing straight line.

Coming back to the mesh generation problem, it
should be interresting to replace all edges that are in-
cident to irregular points by meridians. The new rep-
resentation of the mesh in the (u, v) plane is depicted
in Figure 8.

With this representation, the unique edge flip that al-
lows to have a valid mesh in R3 is permitted. Edge
(a, ba) (in dashed lines) can replace edge (c, d) without
creating invalid triangles in the parameter plane (edge
(c, g) could be flipped as well even though it is not re-
quired). Note here that triangles incident to irregular
points are now right trapezoids with one degenerated
edge, which means that no degenerated triangles exist
in that new representation.

4. MODIFICATIONS OF THE INITIAL
MESH

Our surface mesh generation procedure starts with an
initial “empty mesh” i.e. a mesh in the parameter
space that contains only vertices of the surface bound-
aries. Then, in this new procedure, edges that are ad-
jacent to singularities are transformed onto geodesics.
The question that is addressed in this section is the
validity of this initial transformation.

Consider the surface presented in Figure 9 together
with a mesh generated using the new version of Gmsh’s
MeshAdapt surface mesher (see §5 below).
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Figure 5: A valid mesh in the parameter space that is invalid in the real space.

The initial mesh that contains all boundary points is
presented in Figure 10. Again, a seam and two irreg-
ular points are present in the surface plus a trimming
curve.

In our new procedure, all edges that are adjacent to ir-
regular points are transformed onto geodesics. Figure
11 shows the result of that transformation.

It is actually easy to figure out that the initial trans-
formed mesh of Figure 11 is actually wrong (inverted)
in the parameter space. Figure 12 shows a zoom of the
three problematic edges that make this mesh invalid.

Addressing this problem is indeed quite simple. All
problematic geodesic edges are split along their origi-
nal path (not along the geodesic of course) up to the
point when no intersection occurs. The resulting ini-
tial mesh is presented in Figure 13.

5. LOCAL MESH MODIFICATIONS:
GMSH’S MESHADAPT ALGORITHM

REVISITED

Gmsh’s most basic surface mesher is called Me-
shAdapt2. MeshAdapt’s surface meshing strategy is
based on the concept of local mesh modifications
[14, 15, 16]. The algorithm works as follows. First, an
initial mesh containing all the mesh points and edges
of the model edges that bound a face is built in the
parametric space (u, v) (see §4). Then, local mesh
modifications are applied to the mesh in the parame-
ter plane:

1. Each edge that is too long is split;

2gmsh -algo meshadapt is the commandline that forces
gmsh to use that algorithm.
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Figure 7: True mapping of straight lines in the parameter
space onto R3 close to an irregular point.

2. Each edge that is too short is collapsed;

3. Edge flips are performed in order to obtain a bet-
ter configuration;

4. Vertices are re-located optimally after steps 1, 2
and 3.

Figure 14 illustrates local mesh modifications applied
to edges that are in the vicinity of a irregular point b.
When edge (a, c) is flipped, a new instance of point bc
is created on the degenerated edge and point c becomes
connected to bc. The operation can be reversed as
depicted in Figure 14. When an edge like (a, d) is split
at point e, a new point be is created on the degenerated
line. When an edge like (c, bc) that is connected to the
irregular point is split, bc is replaced by be. Note that
when a point like e is relocated, point be is relocated
as well.

All four local mesh modifications of our algorithm in-
volve details of implementation that are too specific
to be described in a paper but that are critical for ro-
bustness. Interrested readers can download the source
code of Gmsh 4.3.0 that implements the algorithm

b f be

d
c

a f

e e
g

be bg bc ba bd

Figure 8: New representation in the parameter space
where every edge connected to an irregular point is a
meridian. Point bi’s all belong to edge (bi, i) even though
all bi’s 3D locations are equal.

Figure 9: A surface.

that exactly corresponds to the examples of the pa-
per. Nevertheless, the the most critical part of the Me-
shAdapt surface mesher is the vertex relocation, both
in term of the final mesh quality and of CPU time
(it actually takes about 60% of the total mesh genera-
tion time). When parametrizations are very distorded,
simple smoothing strategies do not actually produce
improvements of the mesh, espacially close to singu-
larities. In this new version of the algorithm, advanced
optimization procedures have been used [17] for ver-
tex relocation. Figure 15 show the mesh of the surface
of Figure 9 at different stages of the MeshAdapt algo-
rithm.

6. DELAUNAY MESH GENERATION
CLOSE TO IRREGULAR POINTS

Gmsh’s frontal-Delaunay algorithm is an extension to
surface meshing of the planar frontal-Delaunay mesher
described in [18]. Points are inserted in the domain
in a frontal fashion while always keeping a valid mesh
during the process. The mesh is generated in the (u, v)
plane which means that an anisotropic Delaunay cri-
terion is required to produce isotropic meshes in 3D.

The most critical operation involved in that algorithm
is the edge flip. Consider Figure 16: we’d like to fig-



Figure 10: The initial mesh for the surface presented in
9 represented in the parameter plane.

Figure 11: Intial mesh of surface 9 where all edges ad-
jacent to irregular points are transformed into geodesics.

ure out wether edge (a, d) should be flipped or not.
In order to apply Delaunay’s empty circle criterion,
we actually work in the tangent plane and compute a
unique metric tensorM at location (a+ bc + c+ d)/4
that is symmetrical with respect to points a, bc, c, and
d. This allows to avoid “unstable flips”. In this tan-
gent plane, circle CM(a, c, d) is an ellipsis. The new
representation that is proposed here allows to provide
a robust way of computing Delaunay flips.

In the example of Figure 16, edge (a, d) should be
flipped to (c, bc) because bc is inside CM(a, c, d). Other
occurences of b like ba or bd may be located outside
CM(a, c, d) but the only edge that should be consid-
ered in the circle test is the geodesic (c, bc).

7. EXAMPLES

We have chosen two examples that were invariably cre-
ating invalid elements in all previous versions of Gmsh.

7.1 Many spheres

One of the nastier parametrization that is constantly
used in CAD systems is the sphere, with its two irreg-
ular points at the poles. As a first example, we have
generated a CAD model that consist in a unit cube B
containing 5000 spheres with (pseudo-)random centers
and radii Si, i = 1, . . . , 5000. The final CAD model C
is computed as

C = B \ S1 \ S2 · · · \ S5000.

Figure 12: Zoom on the problematic geodesic edges that
intersect internal edges of the trimming curve.

Figure 13: Corrected initial mesh.

The final model C is depicted in Figure 17. It con-
sist in 3 volumes, 4971 surfaces (mainly trimmed
spheres resulting from the boolean operations) and
18112 curves. Gmsh’s actual script that was used to
generate that model is given by

// Gmsh’s script to generate
// a CAD model with 5000 spheres
SetFactory("OpenCASCADE");

DefineConstant[
rmin = {0.002, Name "Min radius"}
rmax = {0.03, Name "Max radius"}
n = {5000, Name "Number of spheres"}

];

For i In {1:n}
r = rmin + Rand(rmax - rmin);
x = -0.5 + Rand(1);
y = -0.5 + Rand(1);
z = -0.5 + Rand(1);
Sphere(i) = {x, y, z, r};

EndFor

Block(n + 1) = {-0.5, -0.5, -0.5, 1, 1, 1};

BooleanDifference{ Volume{n + 1}; Delete; }
{ Volume{1:n}; Delete; }

Some of the surfaces of the 5000 spheres model are
really complex to mesh, especially when a trimmed
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curve is very close to an irregular point. Figure 18
shows a complicated situation.

7.2 Many ellipsoids

Generating an ellipsoid can be done by applying an
affine transformation to a sphere followed by a rota-
tion. Using Gmsh’s built-in scripting language, this
can be achieved as follows:

R = 2;

Sphere(1) = {0, 0, 0, R};

Affine{ 1,0,0,0, 0,10,0,0, 0,0,1,0 }

{ Volume{i}; }

Rotate {{Sqrt(2), Sqrt(2) , 0},

{0, 0, 0}, Pi/3} Volume{i};}

Ellipsoids have parametrizations that are even more
distorded than spheres. In the following example, 450
ellipsoids Ei, i = 1, . . . , 450 have been inserted into
a unit cube, with random orientantions and random
sizes. The final CAD model is again built as the unit
cube “minus” all ellipsoids. In OpenCASCADE, el-
lipsoids are encoded as B-spline surfaces and their
intersections takes way more effort than intersecting
spheres: it actually took about 7 minutes to generate
the CAD model while only 3 minutes were required to
generate the surface mesh (295 surfaces for a total of
220,523 triangles) and only 14 seconds were required
to generate the 3D mesh (55 volumes and 7,35 million
tetrahedra). Figure 19 show a picture of the resulting
mesh.

CONCLUSIONS

Generating in a reliable manner a quality surface mesh
for arbitrary CAD models entails dealing with various
CAD systems idiosyncrasies. In this paper, we have
presented a crucial modification of Gmsh’s surface
meshing algorithms that is an important step forward
towards this goal, by handling surfaces with a finite
number of irregular points. The two test cases that
are presented are only indicative: hundered of other
examples were successfully tested during the writing
of this paper, all with surfaces that have singularities.

The lack of a structure of proof for surface meshing
that is briefly explained in the introduction is one of
the curses mesh generation people have to live with.
Surface meshers that are reasonably reliable are all
based on heuristics and their disfunctions and bugs can
only be found through extensive testing. For example,
the issue that has been explained in §4 has only been
encountered twice in all our test cases. Yet, it has to
be addressed because the rare conditions of apparition
of the bug will definitively happen at some point in a
software like Gmsh that is used by a large community.

In conclusion, we are aware that other issues will show
up in the long term (maybe impossible) goal of 100%
reliability. Yet, the improvements that are presented
in this paper definitively make Gmsh’s surface meshers
more reliable on a large numer of test cases that were
failing in previous versions. The method that is pro-
posed does not require deep modifications of existing
surface meshing algorithms. Yet, it allows to produce
quality meshes for all test cases that we encountered.
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Figure 18: One surface of the 5000 sphere model that
exhibit a complex configuration close to one of the poles
of the sphere.



Figure 19: CAD model with 450 ellipsoids with random
orientations and dimensions.
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