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SUMMARY

This paper follows a previous one that was dealing with high quality surface remeshing using harmonic
maps [1]. In [1], it has been demonstrated that harmonic parametrizations can be used as input for
surface meshers to produce high quality triangulations. However, two important limitations were
pointed out, namely surfaces with high genus and/or of large aspect ratio. This papers addresses
those two issues. We first develop a multiscale version of the harmonic parametrization of [1] and
then combine it with a multilevel partitioning algorithm to come up with an automatic remeshing
algorithm that overcomes the above mentioned limitations of harmonic maps. The overall procedure
is implemented in the open-source mesh generator Gmsh [2]. Copyright c© 2010 John Wiley & Sons,
Ltd.
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1. Introduction

Most of the surface meshing procedures require a parametrization of the surface. The surface
mesh is generated in the parametric plane and is subsequently projected onto the 3D surface
using the parametrization. Yet, there are situations when the only description of the surface
is a triangulation. In the latter case, the geometric triangulation can usually not be used for
a finite element analysis. One can either modify the geometric triangulation in 3D or use the
triangulation for building a discrete parametrization.

The main driving force in the research on discrete parametrization techniques is Computer
Graphics (CG) where discrete parametrizations are used among other things for texture
mapping. Various approaches have been proposed in the CG literature and it is possible to
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2 E. MARCHANDISE

classify them as follows: linear, non-linear and hybrid methods. Linear algorithms are efficient,
yet they usually do not guarantee the discrete mapping to be one-to-one. It is possible to
combine linear algorithms with local checks to guarantee its bijectivity: we called that approach
hybrid [1]. Non-linear algorithms are considered to be slow and will not be considered here.

The concept of discrete harmonic map has been described first by Eck [3]. Floater et al. [4]
introduced a concept of convex combination map that guarantees that the discrete mapping
is one-to-one. Sheffer and Strurler [5] presented a constrained minimization approach, the so-
called angle based flattening (ABF), such that the variation between the set of angles of an
original mesh and one of the 2D flattened version is minimized. In order to obtain a valid and
flipping-free parametrization, several additional constrained algorithms are developed. More
recently, they improved the performance of the ABF technique by using an advanced numerical
approach and a hierarchical technique [6]. Much research has also been incorporated within
the theory of differential geometry. For example, Levy et al [7] apply the Cauchy Riemann
equations to compute a least square conformal map. This approach is quite similar to that
of Desbrun [8] that minimize a combination of Dirichlet and distortion energy to compute a
conformal map for interactive geometry remeshing. More recently, Mullen et al. [9] have also
presented spectral computation of the conformal map [9].

Recently, discrete parametrizations methods have received some attention from non CG-
specialists and in particular, in the domain of finite element mesh generation. Here, the target
application is clearly surface meshing, especially for surfaces that are defined by a triangulation
only or for cross-patch meshing. In [1], we have demonstrated that the use of such mappings as
parametrizations allowed to generate quality finite element meshes. Yet, two important issues
have not been completely addressed: reparametrization techniques fail when the surface has
a large aspect ratio and/or when it has a high genus. Those issues are critical in the domain
of mesh generation, maybe more than in computer graphics. This paper aims at addressing
those two issues.

In [1], we have demonstrated that parametric coordinates computed using a discrete
harmonic map become exponentially small for vertices located away from the boundaries of
the surface to be remeshed. This makes any 2D remeshing procedure fail because the local
coordinates become numerically undistinguishable. If this issue has already been tackled by
Alliez et al. in the CG community [10], their proposed solution procedure can however not be
used in the context of surface remeshing. In a few words, the idea of Alliez et al. is to partition
the zero genus mesh of large geometrical aspect ratio into two parts. The partition is defined by
first computing an harmonic map and by evaluating the area distortion map that indicates how
the triangles have been shrunk or expanded during the parametrization. Then a vertical line is
drawn in the parametric space that passes through the center of gravity of the distortion map
and that defines the partition of the mesh. If the authors in [10] could partition this way some
simple surfaces with moderate aspect ratio, we found that this area-distortion partitioning
algorithm fails for larger geometrical aspect ratio for the same reason the remeshing procedure
fails (numerically indistinguishable coordinates). Here, we thus extend the idea of Alliez and
develop the concept of multiscale harmonic maps.

The second issue that we address deals with the parametrization of surfaces that are
not homeomorphic to a unit disk, i.e., surfaces that do not have zero genus with at least
one boundary. In the CG community, many authors use a partition scheme based on the
concept of Voronöı diagrams [3] or inspired by Morse theory [7, 11]. The resulting mesh
partitions are area-balanced patches that are disk-like. However, this approach results in a
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HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS: PART II 3

large number of patches and hence a large number of interfaces between those patches. A large
number of patches is however not desirable in the context of remeshing because it constrains
the final mesh to have mesh edges on those interfaces. Other CG authors introduce seam
generation techniques [7, 12] that generate cuts in the surface that are positioned in areas
where they cause no texture artifacts. More recently, some authors suggested different methods
to compute parametrizations that are globally smooth with singularities occurring at only a
few extraordinary vertices [13, 14]. Even though the latter two techniques are attractive in
the context of texture mapping, they are less efficient in terms of computational time than
partitioning methods combined with a local parametrization method.

The solution strategies presented in this paper for the remeshing of surfaces with large
geometrical aspect ratio and arbitrary genus are independent of the chosen type of linear
harmonic maps. Among the harmonic maps, we have implemented the Laplacian harmonic
map onto a unit disk [1], the convex combination map onto a unit disk [1, 4] and a finite
element least square conformal map with open boundaries [9, 10]. The different linear harmonic
maps along with the solution strategies presented in this paper are implemented in the open
source mesh generator software Gmsh [2]. The different examples show that our method is
of high interest for remeshing biomedical triangulations that have a very poor quality input
triangulation, or for industrial CAD-based surfaces that contain too many tiny surfaces that
are not appropriate for finite element computations.

2. Parametrization of a mesh with harmonic maps

Parametrizing a surface S is defining a map u(x)

x ∈ S ⊂ R3 7→ u(x) ∈ S∗ ⊂ R2 (1)

that transforms continuously a 3D surface S into a surface S∗ embedded in R2 that has a well
known parametrization. Such a continuous parametrization exists if the two surfaces S and S∗
have the same topology, that is have the same genus G(S) and the same number of boundaries
∂Si, i = 1, ..., NB . The genus G(S) of a surface is the number of handles in the surface†.

In this work, we consider that the only available representation of a surface S is a conforming
triangular mesh T in 3D, i.e. the union of a set of triangles that intersect only at common
vertices or edges. Let us consider a triangulated surface that has nV vertices, nE edges and
nT triangles. The genus G(T ) is then given through the Euler-Poincaré formula:

G(T ) =
−nV + nE − nT + 2−NB

2
, (2)

where NB is the number of boundaries of the triangulation.

As stated in the introduction, harmonic maps have been chosen for the parametrization
because they are easy to compute. As an example, the discrete Laplacian harmonic map can

†For example, a sphere has a genus G = 0 and NB = 0, a disk has G = 0 but NB = 1 and a torus has G = 1
and NB = 0
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4 E. MARCHANDISE

be computed as follows:  ∆εu = 0, ∆εv = 0 in T ,
u = uD, v = vD on ∂T1,
∂nu = 0, ∂nv = 0 on ∂T \∂T1

, (3)

where ∆ε denotes the discrete Laplacian operator than can be easily computed with piecewise
linear finite elements, and uD(x) is the value for the Dirichlet boundary conditions. Figure 1
shows for example such a parametrization for a triangulation of a cylinder. The triangulation
has two boundaries NB = 2 and the lowest one is mapped onto the circle of the unit disk by
imposing uD(x) = cos(2πl(x)/L) and vD(x) = sin(2πl(x)/L), with l denoting the curvilinear
abscissa of a point along the boundary ∂T1 of total length L (red arrow in Fig. 1).

∂T2

y

u(x)

v

u

∂T1

x

z

T ∗
T

Figure 1. Parametrization. A piecewise linear map creates a correspondence between a 3D surface
mesh T and a 2D mesh T ∗ of same topology (G = 0, NB = 2, η = 2), mapping each triangle from R3

to R2.

When going from continuous harmonic maps to linear discrete harmonic maps (3), three
different issues can arise. The first issue concerns undistinguishable mapping coordinates. As
shown in Fig.1 and as explained in [1] the solution of the mapping becomes exponentially
small for vertices located away from ∂T1. As a consequence, local coordinates u and v of those
distant vertices might numerically become indistinguishable. By deriving an analytical solution
of Laplacian harmonic maps for cylinders, we showed in [1] that the geometrical aspect ratio
of the surface η should be reasonable to be numerically able to distinguish the coordinates.

η =
H

D
< ηmax, (4)

where H is the maximal geodesic distance between a mesh vertex and a boundary vertex of
∂T1 and D is the equivalent diameter of the boundary ∂T1. As the distance on the 3d mesh
is not straightforward to compute, an upper and lower bound for η is computed. The upper
bound for η is computed by using the analytical expression for cylinders: η = 2πA/L2

∂T1
,

where A is the area of the 3D surface mesh and L∂T1 is the arc length of the boundary ∂T1.
The lower bound is estimated by choosing for H the maximal size of the oriented bounding
box of the 3D surface mesh and for D the maximal size of the oriented bounding box for
the boundary curve ∂T1. The oriented bounding boxes are computed with the fast Oriented
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HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS: PART II 5

bounding box HYBBRID optimization algorithm presented in [15] which combines the genetic
and Nelder-Mead algorithms [16].

As we showed in [1] that η = 4 corresponds to an area of mapped triangles of about
r2i = 10−10 (see Eq. (23) and Fig. 10c in [1]), we choose ηmax = 4 as upper limit for the
geometrical aspect ratio of the 3D surface mesh. A second issue is about triangle flipping. As
the discrete harmonic map has no guarantee to be one-to-one, we suggested in [1] a local cavity
check algorithm that locally modifies mesh cavities in which flipping occurs. In the case the
algorithm fails, we suggest to switch to a guaranteed one-to-one convex combination mapping
introduced by Floater [17, 18]. This convex combination is not used as default mapping
since the metric tensor associated with this mapping is much more distorted than the one
obtained with the harmonic mapping and hence the resulting new mapped mesh is of lower
quality. Finally, the last issue concerns triangle flipping that might occur when computing
linear conformal maps with open boundaries. Indeed, a linear algorithm cannot guarantee
that no triangle folding will occur. To remain efficient in the context of surface remeshing, we
use an idea similar to the one suggested by Sheffer et al. [5] that checks the presence of edge
folding.

In this section, we have put to the fore in the context of discrete harmonic mapping
three limitations, namely limitations on the genus G, the number of boundaries NB and the
geometrical aspect ratio η. Those three criteria can be summarized as follows:

i) G = 0;

ii) NB ≥ 1; (5)

iii) η < ηmax.

In the next section, we will first consider a disk-like surface (G = 0, NB ≥ 1) and present
a novel max-cut partitioning algorithm for those family of surfaces. We will then present an
automatic approach for arbitrary genus surfaces that combines this novel algorithm with a
multilevel partitioning algorithm.

3. Multiscale Laplace partitioning method

The multiscale algorithm that we present here is an extension a method proposed in [10]
that aims at building area-balanced maps. Recall briefly the idea of the max-cut partitioning
algorithm of Alliez and his co-authors. Consider the cylindrical surface of Figure 1. In the
parametric plane (u, v), elements far from the boundary ∂T1 have areas that rapidly tend to
zero: the map is not area-balanced. The method proposed in [10] is to build a split line in the
parametric plane. If we assume that every vertex ui(ui, vi), i = 1, . . . , N of the triangulation
has a unit weight, it is possible to compute both the center of gravity uc =

∑
i ui/N and the

axes of inertia of the set of vertices as the eigenvectors of

J =

[ ∑
i(u

c
i − ui)2

∑
i(u

c
i − ui)(vci − vi)∑

i(u
c
i − ui)(vci − vi)

∑
i(v

c
i − vi)2

]
.

The split line considered by Alliez et al. passes through the center of gravity and has the
direction of the principal axis of inertia. It splits the surface in two parts and produces a
quality partitioning of the surface. This “max-cut” partitioning algorithm enables to partition
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6 E. MARCHANDISE

a non-closed triangulated surface mesh that has a large geometrical aspect ratio (think of
arteries, bunny ears, lungs) into two parts. The two mesh partitions can then be subsequently
remeshed by computing two different parametrizations. Yet, the method relies on the fact that
it is possible to classify triangles in 2D with respect to the partition line. When the aspect ratio
is too high, the nodes that are located far away from the Dirichlet boundary have coordinates
that cannot be distinguished: it may be impossible to determine if a node is either on the left
or on the right of the partition line. Moreover, because of the finite precision of linear system
solvers, the mesh in the parameter space may become invalid.

Consider a cylinder of height H and diameter D with an aspect ratio η = H/D = 25.
Applying Alliez’s method with a geometry with that kind of aspect ratio leads to the generation
of a mesh that is incorrect in the parameter space. Figure 2 shows the result of the harmonic
map parametrization into the unit circle. Triangles get smaller and smaller when they get close
to the center of the circle. Figure 2 shows all triangles that have areas smaller than 10−15.
Those small triangles correspond roughly to 30% of the total amount of triangles of the mesh.
The center of gravity uc is situated too high so that the split does not partition the mesh in
an optimal way, as it is depicted on Figure 2.

Figure 2. Partitioning a cylinder of aspect ratio η = 25. Left figure shows the mesh in the parameter
space with the computed split line. Center figure shows a zoom in the parameter space with all
triangles of size smaller than 10−15. Right figure shows the (incorrect) partitioned mesh that relies on

the split line.

The behavior of Alliez’s method can become erratic for more complex geometries. Consider
the example of Figure 3. Here we consider the geometry of an aorta with an aspect ratio
η ' 17‡. The surface has NB = 13 boundaries. The image of the partition line is far from
being smooth in the real space and the resulting partition is not usable.

Here, we propose a multiscale partitioning algorithm that is a generalization of the
partitioning algorithm of Alliez et al. Consider a surface with a high aspect ratio. The elements
of the parametric plane that have too small areas form m clustered regions of the plane. Figure

‡the geometry has been downloaded from the simbios web site https://simtk.org/frs/download.php?file_
id=662
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HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS: PART II 7

Figure 3. Partitioning an aorta of aspect ratio η = 17 with NB = 13 boundaries using the area
balanced partitioning method of Alliez. Top left figure shows the mesh in the parametric space. The
color indicates the area distortion map, that is, the ratio between the area of each triangle in the 2D
space and the triangles area in the 3D space. The black line shows the partition line that should split
the mesh into two area balanced mesh partitions. However as can be seen on the left middle figure,
the mapping could not be computed correctly due to numerical round-offs errors and triangles have

been flipped. The resulting mesh partition is presented in the right figure.

4 shows an illustration of the first step of the multiscale partitioning algorithm for a mesh of
an aortic artery.

Each of those m subregions can be translated to its center of gravity and rescaled so that
its bounding box is of size 1. A new map per subregion can therefore be computed. The latter
procedure can be applied recursively to those m subregions until every element of the map
has a computable (i.e. sufficiently large) area. At the end, a split line is defined through all
levels of the recursion, leading to a procedure that splits the surface into two parts that can
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8 E. MARCHANDISE

descending aorta

carotid artery

innominate

aortic
arch

subclavian

artery

artery

T ∗0,good

T 0,good

T ∗0,small
3

T ∗0,small
1

T ∗0,small
2

Figure 4. First step of the multiscale partitioning algorithm for the geometry of an aorta. The triangles
that have a too small area in the parametric plane define here two clustered regions. Those regions
are then withdrawn from the parametrization. The three small white regions visible in the parametric
space T 0,small

i , i = 1, ..., 3 correspond respectively in the 3D space to the subclavian artery, the carotid
artery, and the descending aorta.

be easily parametrized i.e. for which no element is far from the unique boundary.
Our multiscale partitioning method is based on the computation for n levels of discrete

Laplacian harmonic maps (denoted uij(x), i = 0, ..., n) and reads as follows (see Fig. 5):

1. At Level 0. Parametrize the surface triangulation T with a Laplace harmonic map u00(x)
and a Dirichlet boundary condition that maps one of the boundaries of the mesh ∂T1 onto
the unit circle (red line on Fig.5). The parametrization is computed as the solution of the
PDE’s equations (3) that are discretized with linear finite elements on the initial STL
triangulation (see paper [1] for more details about the harmonic mapping computation).

2. The triangles that have an acceptable size are tagged in the parametric space as T ∗0,good
(corresponding to T 0,good in the real space). See for example the blue part of the geometry
on Fig. 5. The triangles that have a mapped area smaller than Amin

2D = 1.e−10 are

withdrawn from level 0 and are put in sets of connected small triangles T ∗0,small
j , j =

1, ...,m. In the case of Fig. 5, there are three sets (m = 3) of connected small triangles
for level 0§.

3. At Level 1j. For each connected triangulation T 0,small
j , define the parametrization u1j(x)

with a Laplace harmonic map and a Dirichlet boundary condition that maps the

§Note that the pathological sets of triangles which contain only very few triangles are not taken into account.
The triangles belonging to those sets are then tagged as T ∗0,good.
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HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS: PART II 9

boundary T 0,good ∩ T 0,small
j onto the polygon defined in the 2D parametric space at

level 0: uD = αu0(x). Note that this polygon is scaled with a parameter α that is such

that the equivalent diameter for T ∗0,small
j has a value of 1.

4. For the levels i = 2, ..., n, repeat step 2 and 3 by replacing level 0 and 1 respectively by
level i− 1 and i until the set of small elements at level i (T ∗i,small

j ) is empty.

5. Define in the parametric space a splitting line that connects recursively the center of
gravities of the small mapped connected triangles T ∗i,small

j to the left and right of the

unit disk. For the last level, we take either the barycenter of the elements T ∗i,goodj or the
centers of the closed loops inside the 2D mapping (see for example mapping 11 and 30
in Fig. 5).

It must be noted that the multiscale procedure defined here somehow aims at computing one
single harmonic mapping with a machine precision that exceeds the double precision. Some of
the sub-problems consist in mapping 3D sub-triangulations onto non convex regions: this, in
principle, does not guarantee those sub-mappings to be one-to-one. Yet, boundary conditions
of the sub-problems arise from upper recursion levels, in a way that the global multiscale
problem aims at solving one single harmonic map from S onto a unit circle (which is convex).
This proves that every sub-problem will be well posed and will provide sub-mappings that are
one-to-one.

This new multiscale partitioning method has allowed us to partition rather complex surfaces,
with very high aspect ratios and a large number of boundaries. Figure 6 presents two
examples of the multiscale partitioning algorithm applied to biomedical geometries. A correct
partitioning of the aorta of Figure 5 is presented.

We have also run our algorithm for a more complex case: the geometry of human airways of
very large geometrical aspect ratio η = 89 (Figure 6, right). Segmentation of the lung models
is performed on low dose CT images, voxel size of 0.5mm, using the commercially available
Mimics software package (Materialise, Belgium). A semi-automatic segmentation algorithm
places all identifiable airway branches in a separate mask. The smooth 3D models are generated
from the segmentation masks. These models include upper airways, all central airways, and
the distal airways with a minimal diameter of 1− 2mm. This corresponds to terminal airways
in the 5th-9th generation. The smoothed models are cut perpendicular to the airway centerline
to provide well defined inlet and outlet surfaces. The resulting STL triangulation of the lung
models satisfies the topological conditions (5) (i)-(ii)(G = 0, NB = 147) so that our multiscale
approach can be applied. In what follows, a recursion depth of n = 15 has often been reached.

4. Automatic remeshing

In this section, a fast and automatic algorithm is developed that overcomes the three
topological and geometrical limitations of harmonic maps (see conditions (5)).

Topological conditions (i) and (ii) require the surface to have a genus G = 0 and at least one
boundary (NB ≥ 1). The way to go is to split the surface into partitions that have the right
topology. If G > 0, then it can be shown that it is possible to define G independent cuts that
divide the surface into subsurfaces that all have G = 0. There exist specialized computational
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Figure 5. Multiscale Laplace partitioning method of an aorta(G = 0, NB = 13, η = 17). In this
example there are n = 6 different levels on which harmonic maps are computed. The red line shows
the partition line that recursively splits the mesh into two area balanced mesh partitions (see the

resulting mesh partition in Fig.6 ).
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HIGH QUALITY SURFACE REMESHING USING HARMONIC MAPS: PART II 11

a) b)

Figure 6. Examples of the multiscale Laplace partitioning method applied to geometries with large
geometrical aspect ratio η: a) aorta (η = 17) and b) human airways (η = 89).

homology algorithms that aim at constructing such a minimum set of cuts [19]. Yet, those
algorithm are usually slow (they act on a coarsened version of the triangulation, with the
same topology and use a greedy algorithm to determine the cuts) and they do not always
produce optimal cuts in term of their “shape”. Here, we look at simpler solutions, even if more
than G cuts are used. We use a multilevel edge partitioning software such as Chaco [20] or
Metis [21] and partition recursively the triangulation into a minimal number of partitions that
satisfy the topological and geometrical conditions. For the geometrical condition (iii) to be
satisfied, we use the partitioning method based on the above presented multiscale harmonic
map.

The automatic procedure for remeshing a triangulation T is illustrated in Figure 7 and reads
as follows:

1. First, check conditions (i)-(ii) by computing the genus of the triangulation using (2) and
the number of boundaries NB . If the topological conditions are not satisfied, recursively
split the mesh with the multilevel partitioning method until satisfied.

2. Next, check condition (iii) by computing approximately the geometrical aspect ratio η
from the analytical expression for cylinders of height H and diameter D: η = H/D ≈
πA/L2, where A is the area of the triangulation and L is taken to be the maximal
curvilinear length of all the closed boundaries of the triangulation (L = 2πR for the

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–6
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12 E. MARCHANDISE

a) b) c)

Figure 7. Remeshing algorithm for a skull geometry. a) Initial triangulation (G = 2, NB = 0) that is cut
into different mesh partitions of zero genus, b) Remesh the lines at the interfaces between partitions,
c) Compute a harmonic map for every partition and remesh the partition in the parametric space

(u(x) coordinates visible for one partition).

cylinder). In case this condition is not satisfied, split the mesh into two parts with the
multiscale laplacian partitioner defined in the previous section.

3. Compute an armonic mapping for every mesh partition.

4. Remesh the lines that are the boundaries of the triangulation and the interfaces between
the mesh partitions (see the interfaces between colored patches in 7a that are marked
with thick white lines in Fig.7b). Those lines are defined as model edges and divided into

N parts as follows: N =
∫ L
0
||x,t|| /δdt, where δ is the prescribed mesh size field. The

remeshed lines are embedded in the final mesh (see Fig. 7c).

5. Use standard surface meshers to remesh every partition in the parametric space and map
the triangulation back to the original surface.

6. If a volume mesh is needed, generate a volume mesh from the new surface mesh using
standard volume meshing techniques (frontal and Delaunay meshers are available in
Gmsh).

The automatic procedure is implemented within the open source mesh generator Gmsh [2].
Examples of how to use it can be found on the Gmsh’s wiki: https://geuz.org/trac/gmsh¶.

¶Access the wiki with username gmsh and password gmsh
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a) b) c)

Figure 8. Remeshing of an arterial tree (G = 0, NB = 7, η = 28). The initial mesh is first split into two
parts using the multiscale Laplacian partitioning method. Each of those two parts is then mapped in

the parametric space by computing (a) a Laplacian harmonic map (b) and a conformal map (c).

5. Results

The first example on Fig.8 shows two different types of harmonic mappings (Laplacian and
conformal) for an idealized arterial tree. The geometry has genus G = 0 and NB = 9
boundaries, so hat the topological conditions are satisfied. However, the geometrical aspect
ratio η is too high η = 28. Therefore, the input mesh has been partitioned into two parts with
our multiscale Laplacian partitioning method. The mapped meshes are presented in Figs. 8b)
and c). The mapped mesh obtained with the Laplacian harmonic map onto a unit disk presents
lots of mesh distortion while the one obtained with the conformal mapping gives a less distorted
parametrization and mesh metric. The remeshing being performed in the parametric space,
it is important to keep in mind that the 2D meshing algorithms are more efficient with less
distorted mesh metrics. Meanwhile our Gmsh’s 2D meshing algorithms (Gmsh MeshAdapt,
Delaunay and Frontal) are able to deal with a mesh distortion such as presented in Fig.8b.

The next example presented in Fig. 9 illustrates a uniform remeshing of a human pelvis
that has genus G = 9 and that is a closed surface , i.e. NB = 0. We compare the quality of
the initial STL triangulation (obtained through a segmentation procedure) with the quality of
the remeshed pelvis based on a laplacian harmonic map. The quality of the isotropic meshes
is evaluated by computing the aspect ratio of every mesh triangle as follows [2]:

κ = α
inscribed radius

circumscribed radius
= 4

sin â sin b̂ sin ĉ

sin â+ sin b̂+ sin ĉ
, (6)
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14 E. MARCHANDISE

â, b̂, ĉ being the three inner angles of the triangle. With this definition, the equilateral triangle
has κ = 1 and degenerated (zero surface) triangles have κ = 0. For the example of the pelvis,
it is observed that the mean κ̄ and minimum quality κmin of the new mesh are both very high:
κ̄ = 0.94, κmin = 0.62. Besides, the mean quality measure is found to be constant (±2%) for
all examples and hence independent of the initial triangulation and the mesh density.

Remeshed
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Figure 9. Remeshing of a human pelvis with a harmonic map (G = 8, NB = 0). The left figure shows
the remeshed surface and the right figure the quality histogram of both the initial STL file and the

remeshed surface based on a Laplacian harmonic map.

The initial STL triangulation is made of 25.836 triangles and the remeshed human pelvis
is composed of about the same number of elements (26.313 triangles). Figure 10 shows a pie
chart diagram of the time spent in the different steps of the automatic remeshing procedure
described in section 4. As can be seen in the diagram, most of the time is spent in the 2D
meshing algorithms. The time needed for the parametrization computed with harmonic maps is
only 5% of the total time, while the percentage of time needed for the partitioning (combination
of the multiscale and multilevel partitioning methods) is less than 20% for this mesh. The total
time for remeshing is 9s (on a MACBOOK PRO clocked at 2.4 GHz.) for this example. We also

Figure 10. Time spent in the different steps of the automatic remeshing procedure described in section 4
fr th mesh model of the human pelvis 25k triangles. The total time for remeshing is 9s.
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Remeshing Number of Partition Parametrization Total remeshing
partitions time (s) time (s) time (s)

LSCM Levy [7] (1.3Ghz) 23 30 95 −
Eck [3] (1.3Ghz) 88 - - 33.5
ABF++ Zayer [22] 2 - 13 -
LinABF Zayer [22] 2 - 2 -
Presented method (2.4Ghz)
* laplacian partitioner 2 16.7 1.4 25
* multilevel partitioner 10 7 1.4 14

Table I. Remeshing statistics and timings for the bunny mesh model of 70k triangles (new mesh of
25k triangles). Comparison (when available) of the presented method with other techniques presented

in the Computer Graphics community.

compare the proposed method with two other remeshing packages presented in the literature.
We first consider the well-known bunny mesh model of 70k triangles presented in Fig.11‖. The
original mesh has NB = 5 holes and its genus is G = 0. We compare in table I some statistics
and timings of our algorithm with the least square conformal map (LSCM) of Levy et al. [7],
with the multiresolution remeshing of Eck et al. [3] and with the angle based parametrization
(ABF) of Zayer [22]. The table as well the timings for our remeshing procedure considering
the two different partitioners.

Figure 11. Remeshing of the bunny mesh model of 70k triangles (G = 0, NB = 5). Left figure shows the
two partitions, middle figure shows the conformal harmonic parametrization that has been computed

for both mesh partitions and right figure shows the remeshed bunny with about 25k triangles.

Another standard test case that is used in the litterature is the feline mesh model of 50k
vertices (G = 0, NB = 0) presented in Fig. 12. Statistics on the remeshing procedure are
presented in table II. The first remeshing package we compare with is a remeshing method

‖The model can be downloaded at the following web site:
http://www.sonycsl.co.jp/person/nielsen/visualcomputing/programs/bunny-conformal.obj
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Mesh Vertices Min θ Mean θ L2 Error Remeshing time(s)

Original in [23, 24] 49 864 3.8◦ 40◦ -
Remeshed in [23, 24] 10 825 7.4◦ 48.3◦ 0.64% 74
Remeshed in [25] 256 − − − 900
Remeshed with presented method 12 946 11.6◦ 48.7◦ 0.53% 19

Table II. Remeshing statistics for the feline mesh model of 50k vertices (95k triangles) with the
remeshing time (new mesh of 25k triangles).

based on a local parametrization approach [23, 24] and the second approach is based on a global
parametrization approach with an atlas of open base charts that covers the base mesh [25].
Table II shows the statistics of the re-meshes of the feline model along with the computational
time for the remeshing procedure. The statistics are given in terms of the minimal angle of
the triangles. For a high-quality mesh, the minimum of these values should be no less than
θ = 10◦, and the average should be no less than θ = 45◦. We also present the geometrical
remeshing error as the Hausdorff distance normalized by the bounding box diagonal, obtained
using the Metro tool [26] and show the remeshing time. Results in table II show that our
approach, besides from generating meshes with the highest quality with respect to all criteria,
is more efficient in terms of computational time than the two other approaches.

Figure 12. Remeshing of the feline model (G = 0, NB = 0) of 50k vertices with the presented method.
Left figure shows the initial mesh that has been automatically partitionned into 13 patches and right

figure shows the remeshed feline model.

Optimization of surface triangulations is very important in the context of biomedical
geometries where the triangulations are constructed mostly from medical images through a
segmentation procedure. We further illustrate the capabilities of our algorithm by showing
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the remeshing of airways models presented in Figs.13 and 14. The presented algorithm is
compared with the meshing algorithm of Mimics. Mimics uses a two step mesh adaptation
strategy in order to optimize the initial STL triangulation: in a first step three iterations of
remeshing improve skewness to a minimal value of 0.4. In this step the maximal edge length is
set to 0.5mm and the maximal geometrical error to 0.01mm. Hereafter a quality preserving
triangle reduction is performed. Again three iterations are done with a maximal edge length
set to 0.5mm and the maximal geometrical error set to 0.05mm. This provides the final
remeshed model with Mimics. In comparison, our technique relies on a multiscale partitioning
of the airway models into two parts of moderate geometrical aspect ratio. Each of those two
parts is then parametrized using a harmonic map and the remeshing is then performed in the
parametric plane using standard 2D meshing algorithms (MeshAdapt, Delaunay or frontal). As
can be seen in Figs.13 and 14, the quality of the meshes obtained with a remeshing procedure
based on a harmonic map is much higher than with the mesh adaptation strategies (such as
the one implemented in Mimics).

a) b) c)

Figure 13. Remeshing of human lungs: a) part of the initial STL triangulation, b) remeshed geometry
with Mimics (after 2 steps) and c) remeshed lung based on the Harmonic mapping remeshing

procedure.

The next example presented in Fig. 15 shows parts of the initial STL mesh of a complete
aorta illustrated in Figs. 5 and 6 and the mesh after the remeshing procedure. The remeshing
procedure aims at removing the very small elements present in the initial mesh at the junctions
of the arteries. The remeshing has been performed by first partitioning the mesh using the
multiscale partitioning method. The two resulting mesh partitions are then suitable for the
computation of harmonic maps and the remeshing procedure is finally performed in the
parametric space.

Remeshing with parametrizations based on harmonic maps can also be very interesting
for computational mechanics. In many cases, the surfaces are designed using a CAD system
composed of multiple patches. When their sizes are of the same order of magnitude as the mesh
size, those patches can result in very distorted mesh elements and impact dramatically on the
quality of the boundary layer mesh and, hence, the CFD solution. For those small patches, the
remeshing based on cross-patch parametrization enables to remove the small elements present
in the cad-based meshes.
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Remeshed Harmonic map
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Figure 14. Remeshing of human lungs with the presented algorithm as compared with a commercial
package such as Mimics.

Figure 16a shows a zoom of an initial mesh of a landing gear consisting of about 106

triangular mesh elements composed of 852 different patches. For this example, the small
elements presented in the initial cad-based surface mesh (see for example Fig.17a) prevented
us to build any CFD volume boundary layer mesh. Thanks to the cross-patch parametrization
(Figs. 16b and 17b), we were able to reduce the number of patches to only 291 surface patches
and build a suitable CFD boundary layer mesh of 12M nodes for that model (Fig. 19).

Figure 18 shows the the quality histograms of the two surface meshes: the cad-based mesh
and remeshed mesh. We can see that the very small elements have been removed during the
remeshing procedure. A preliminary computation has been done using the in-house flow solver
developped at Cenaero [27]. The flow Reynolds number based on the diameter of the shock
strut is Re = 73000 and the Mach number is Ma = 0.166. The flow is supposed to be fully
turbulent. As the mesh is not fine enough to capture correctly all the turbulent scales, a Delayed
Detached-Eddy Simulation [28] (DDSS) turbulence model is used. The DDES is a hybrid
RANS (Reynolds-Averaged Navier Stokes)/LES (Large Eddy Simulation) method which uses
a RANS modelling in the attached boundary layer and a LES model for the detached flow. The
simulation ran on 200 CPU and the time needed to compute one convective time (tc = L/Uc)
is 3 hours. Fig. 20 shows the instantaneous pressure on the surface of the landing gear. An
improvement of the volume mesh is in progress in order to obtain a better representation of the
wake. The results will be used to measure, with an acoustic solver, the sound created by the
landing gear. This case has been studied within the frame of the BANC (Benchmark problems
for Airframe Noise Computations) Workshop.

The definition of the patches to be cross-parametrized is performed by the user but takes
few time regarding the complexity of the CFD computations. For the industrial example of
the landing gear, the definition of the new patches and the remeshing takes only 1 hour on
1 CPU compared to 3 hours on 200 CPU for the CFD simulation. Besides, as the remeshing
method based on cross-patch parametrization is fast and simple, it can be easily integrated
and automated in an industrial CFD computation chain.
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Figure 15. Remeshing of a the aortic artery presented in Fig. 5. We show parts of the mesh near the
bifurcations before (left figures) and after (right figures) the remeshing procedure based on a Laplacian

harmonic map.

6. Conclusion

In this work, we have presented a fully automatic approach based on harmonic mappings
for remeshing surfaces that overcomes the limitations of harmonic maps: namely limitations
on the geometrical aspect ratio and on the genus of the surface. The approach is original as
it combines an novel multiscale harmonic partitioning method with a multilevel partitioning
algorithm to come up with an automatic remeshing algorithm that overcomes the limitations
of harmonic maps. With the present approach, we are able to remesh any surface with any
topological genus and with large geometrical aspect ratios. We showed that the remeshing
procedure produces high-quality meshes and that it can be used for fairly complex biomedical
and industrial applications.
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a) b)

Figure 16. Cross-patch remeshing of a landing gear (with patches of G = 0, NB = 1). The left figures
a) show a surface mesh that is made of 582 geometrical patches and the right figures b) show the
remeshed surface made of only 291 patches. The remeshed patches are computed using cross-patch

parametrization.
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a) b)

Figure 17. Remeshing of a landing gear. Left Figure shows a part of the initial mesh with many patches
and right Figure shows the mesh with the reparametrized patches.
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Figure 18. Quality histogram for the remeshing of a landing gear. The left figure shows a zoom for
range of small aspect ratio κ ∈ [0 : 0.1] and the right figure the whole range of aspect ratio κ ∈ [0 : 1].
As can be seen, the remeshing procedure has removed the small elements by merging different patches

using a cross-patch parametrization.
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